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ABSTRACT The study of cyclic elastoplastic constitutive laws has focused on nonproportional
loadings, but for uniaxial loadings some problems remain, as for example the ability for a law
to describe simultaneously ratchetting (constant increment of strain) in nonsymmetrical load-
controlled test, elastic and plastic shakedown in symmetrical and nonsymmetrical cases.
Previously, we have proposed a law with a discrete memory variable, the plastic strain at the
last unloading, and a ratchetting stress which, in addition to earlier phenomena, describes the
cyclic hardening in a push-pull test, and the cyclic softening after overloading. On the other
hand the choice of all macroscopic variables is justified by a microscopic analysis. A modified
law was proposed to take into account the dependence of cyclic stress—strain curves on the
history of loading. The extension to three-dimensional situations of this law was proposed. The
discrete nature of the memory leads to discontinuity problems for some loading paths, a
modification is then proposed which uses a differential evolution law. For large enough uniaxial
cycles, the uniaxial law is nevertheless recovered. An incremental form of the implicit evolution
problem is given, and we describe the implementation of this model in the Code Aster® a
thermomechanical structural software using FEM, developed at Electricité de France. In this
paper we briefly explain the model and we present some comparisons between experiments and
numerical results, for nonproportional strain-controlled tests (circular, square, stair loading),
and constant-tension cyclic torsion tests, on a 316 stainless steel, using uniaxial identification.

1 The Microstructure under Cyclic Leading

When the cross-slipping of dislocations is possible for a metal — easy cross-slip
for pure Al and pure Cu, difficult cross-slip for a 316 stainless steel —
the microstructure is characterized at low cyclic amplitude by permanent slip
bands and at higher amplitude by cell structure, whose mean size decreases
with an increasing amplitude of loading. But when the amplitude of loading
decreases, the cell structure is stable at room temperature. The cell structure
seems also to be detected for a monotonic loading. As before the cell size
decreases with increasing strain.
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We suppose that the mean cell size is defined by the maximal stress supported
by the material in its history. The asymptotic form of the curves showing mean
cell size as a function of the amplitude of loading suggests to us to suppose the
existence of a minimal cell size depending only on the material and not on the
loading. During cycling, dislocations pile up on the obstacles (walls), and the
steady-state is obtained when the numbers of dislocations created and annihi-
lated are equal. The plastic strain is then created by dislocations which sweep
away the cell volume or PSB, and then are annihilated by dislocations of
opposite sign. If the loading amplitude is increased after obtaining steady-staie at
a first level, smaller cells will be obtained. That means that new obstacles are
created, on which dislocations have to pile up again. More than one cycle is
needed to get a new stabilized state. This is macroscopically illustrated by a
push-pull test, and characterizes the interaction between dislocation density and
cell size.

Different experiments show that, at room temperature, ratchetting is practi-
cally obtained at a necarly constant maximal stress, independently of the
amplitude of loading (6). This suggests the use of a cyclic ultimate stress § -
the ratcheting stress — which we relate to a minimal cell size. The idea of a
threshold for ratchetting has been also used by other authors (7).

This paper builds on earlier published work (1-5).

2 Definition of Macroscopic Yariables through Microstructure
We define now more precisely the macroscopic variables in relation to the
microscopic analysis.

— &P, usual plastic part of the strain, related to the gliding of dislocations.

- @, maximal past absolute value of stress supported by the material in its
history, related to the actual cell mean size: this variable is used in S — g,
where S is the ratchetting stress.

— &b, plastic deformation at the last untoading point. Here, the significant
variable is the difference ¢* — &f, on steady-state. It measures the amplitude
of plastic strain, which may be related to sweeping of cell volume by the
active dislocations,

— 4, cumulated plastic strain, related to the density of dislocations. In order to
take into account the interaction between cell size and disloction density, we
use instead the variable.

a2 0-51
/,(1 S )

3 Uniaxial Constitutive Law
3.1 Natural introduction of .,

In the case of ratchetting, after a few cycles the tension and compression curves
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Fig I Definition of £.

are translated at each cycle of a constant value, see Fig. 1. Using two functions
g and h, we have

g =he"—¢5,) and o, =g —e5, )

with I, ¢, ¢” > 0 and h" < 0, where &5, (resp. €5, ,) is the plastic strain at the
last unloading on the compression (resp. tension) curve. These variables have
been used in a different way (8). We suppose that there is no ratcheting
phenomena for a symmetric loading; for ¢,,, = —0,,,,, we obtain plastic or
elastic shakedown. It is possible, using two functions 4 and B, to show that the
general form of tension and compression curves in the ratchetting state are as
follows

o, = (&7 — €3, )A(]&" — &5, ]) + B(|e” — &341)
Gc:(E"—sgn)A(!.ﬂ:p—sg"HI)'-B(|.':" Egll+1|)

We studied the case for A = 0 (1). It has been shown in this case that the law
may describe the following phenomena

— ratchetting in a non-symmetrical load-controlled test,

— elastic and plastic shakedown in symmetrical and non symmetrical test,

— cyclic hardening in a push-pull test,

— cyclic softening after overloading and also the dependence of cyclic-stress-
strain-curve on the history of loading.

However the difficulty in this case comes from the bad representation of the
cyclic stress-strain curve obtained after prehardening, and also from the linear
relation between mean stress and mean strain.

The case for A = K, with K a non-zero constant, is described in (2), and here.
However a better result may probably be obtained by a nonlinear function.
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g, = K(eP — 82,,) + B(| " — Egnl)
0, = K(Ep_ ggn+1) - B(lﬂp - 83n+1!)

This remembers the yield function with combined kinematic isotropic hardening
in three-dimensional situations.

3
% {81 — xiMsy; — xij)} —R=0

which gives under uniaxial loading
3 . .
o =3 A, + R in tension

3 . :
oe=3 X,y — R in compression

3.2 Introduction of a ratchetting stress §

We suppose that in the uniaxial case ratchetting {constant increment of strain)
is obtained when the maximal stress in absolute value o, reaches the value §
(2). But for the stresses smaller than this value we have elastic or plastic
shakedown. The simplest way to obtain this result is to transform the expression

K(e? — &5,) into K(Se® — o,85,)

The expression of tension and compression curves in the case of plastic
shakedown are

O = K(Sgp - O-p'ggn) + B(lsp o t‘Zgnl)

o, = K(SSP - Jpggni-l) - B(IEP - Egn+1§)

Fig 2 Plastic shakedown.
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It is then possible to describe schematically the onset of ratchetting and plastic
shakedown. In fact, the above two relations constitute a recurrent process. We
gel two curves with X =¢,; Y = &5,

Curve CL: K(SY ~ 0, X)+ B(|Y — X|) ~ 6,,, =0

Curve C2: K(SX — 6,Y) — B{|Y — X{) —0,,;,= 0
For § » a,, CI and C2 are two intersecting curves and with an initial state of
strain &3, plastic or elastic shakedown is obtained as shown in Fig. 2. For § = g,
Ct and C2 are two parallel lines, so that ratchetting is present. However if

Tax = — Oun Uhe two lines are superposed and plastic or elastic shakedown is
obtained.

3.3 Introduction of the cunnilaied plastic strain A

The introduction of this variable allows us to describe hardening or softening
for strain-controlled tests. However, once sieady-state is obtained in a strain-
controlled test, for a greater strain amplitude the steady-state will be obtained
in one cycle. This difficulty will be erased if we use the parameter Al — o,/S)
instead of A. Finally as a simple choice using two functions K and f(2), we may
take:

. K(;..(n 8 E’Sx))(sBp a2 +f(i(1 - %))B(%sp ~ )

[ac = K(A(l - %)) (56° — 0p&5ns 1) —f(z(l - ‘f—;))ﬂ( |6 — B n}

The resulting properties are as follows,
(1) The usual cyclic stress—strain curve for a symmetric loading is given by
_Ac AP
y=g Xeo
2
x <§(—~ K, =K({l-w)

o

1—-3K «x

o)

2K, Sx + B(2x
y= (%2 - (2x) where \

If there is a large prehardening &, the cyclic curve is given by:

3
y=3 K.+ o,)x + B2Y)

{2) The relation between ¢ and 8., is

mean mean

3

Omean = E

Kr_o(s - Jp)aﬁlcan

This gives a possibility of a good stress relaxation for large prehardening, which
seems to be the case for 316 stainless steel.
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4 The Three-dimensional Law

The extension to three-dimensionaf situations of the previous uniaxial law begins
with the choice of the variables themselves. For the sake of simplicity the
deviatoric part of the tensors is chosen as usually done, to keep the initial form
of the uniaxial law, The constitutive law is now simply described by an
elastoplastic model where the yield function combines isotropic and kinematic
hardening
Flo, e, A, 0,, 8) = oy — x(e%, 4, 6, e))| — R(4, 0,,, | ¥ — &71)

The usual normality and consistency relations are used for the remaining
variables &, and 4 (3). But a difficulty arises from extension of the definitions
and evolution equations of the memory variables o, and ;. As a matter of fact,
the uniaxial loading histories are very poor: there is no tangent loading; cycling
is only defined by two extreme values ete. Intrinsic definitions and more precise
evolution laws are needed in the three-dimensional case. The variable o is
defined as the maximal past deviatoric norm of the stress experienced by the
material — the norm is denoted by |ap|

a,(f) = Max |ap(i)]
ue{0,r]

Note that ¢, may keep its initial value ag during the loading history. We can

rewrite this definition as a new yield function G in the deviatoric stress space
G=|op|—a,
leading to the evolution equation for &, (H is the Heaviside function)

op6

Gy = H(]op) — 0,) >
=l

Two problems arise from the definition of the evolution law of &) (3). The first
one is that the material behaviour admits some undershooting of the monotonic
stress—strain curve after an elastic unloading followed by reloading. However
this is not always a disadvantage.

The second problem, more important from a physical point of view, is the
requirement of continuity of the stress—strain curve with respect to very smail
unloadings, With full discrete memory, this requirement is generally not fulfilted:
any unloading, even as small as possible, leads to a discontinuous evolution of
the memory variable which induces in turn a discontinuity on the value of the
yield function F. This last discontinuity can finally cause the violation of the
yield condition {F < 0).

For three-dimensional loading paths, this problem is of primary importance
because micro-unloadings can result from the change of direction of the loading
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path in the stress space. To overcome this last difficulty, we modify the discrete
evolution law for ] to semi-discrete one — the word semi-discrete is used because
of the saturation of the memory ensuing from the definition of the evolution.
Starting from the discrete model

Aeh =" — gl = P if F=0 (61") 0
do

Weintroduce a scalar differential evolution together with a consistency condition
ensuring the fulfilment of the yield condition.

Bh=dle? —el}y if F=0 ( GF) 0
il

&z=0 aF =0 F<0

% is a non-decreasing scalar parameter which may vary between 0 and 1 (3). It
can be seen that, with appropriate generalized hardening conditions on the yield
function F we have

— the yield condition (F < 0) is never violated;
— the continuity with respect to the chronology parameter is restored:
- lhe memory shows a saturation effect: if during the unloading, the V‘l]lle of
» reaches P, then ¥ stays at this value and the unloading becomes purely
clastlc with no evolutlon of an internal variable;
— for uniaxial cycling loadings, the discrete memory is recovered between two
successive unloadings, provided the cycle is large enough.

5 The Implicit Integration of the Three-dimensional Rates Equations

When {oy,| does not reach ¢, the present formulation reduces to a standard
plasticity model.

Nonstandard flow rules are obtained when a, varies during loading (but
normality for the plastic strain rate still remains valid). To write down extensively
the proposed constitutive law, we present hereafter its implicit incremental form
which will be used in computations. We denote by

© ¢, the ‘mechanical state’ (2,5 4, 0, E0);
© A, the elasticity tensor;
e X, the backstress tensor.

In order to integrate rate equations of the constitutive model over the increment
At, we integrate the flow rule by the backward difference scheme

Ag? = A)(aF)
00 /i1 a

During plastic flow, the consistency condition is imposed at the end of increment

Fioa=0




146 MULTIAXIAL FATIGUE AND DESIGN

The equations of elasticity are written at the end of the increment
€

o= Aviabra

The rate of £ is integrated by the forward difference scheme in order to respect
ny e P r_ P
[f‘mﬂkm == Ly + Asrr - 8,]
At the end of increment, so we have
P »

Ag] = Aufe — £)),
The value of the pick function G must also be zero at the end of the increment,
when ¢, varies during loading

GH—At = O+ At — 1X§e+m - RHAr

So, we can exhibit four types of increment for the model, by opposition with
the two states, elastic and elastoplastic, of a standard plasticity model:

A purely elastic increment (E), where only the variable ¢ is incremented.
A pseudo-elastic increment (PE), where only & and o are actualized.

Agh = Anle? — &),

Oty ar = A£+Ar(£r+m - F:}) (81}

A P P —_
F{G;+A:: Epr+an 6 s Gpn zr) — 0

An elastoplastic increment (EP), where o, A and & are actualized.

oF
Ormr = Aradesa — & — A2 (a) )
1+

F(GHAH Si]':l’ Erp+ms g AHA() =0 (Sz)

—  And a pseudo-elastoplasticincrement (PEP), where 6, 2, &P and o, are updated.

oF
Tian = Ar-i—Ar(EHAr - EF — AL (%) ) )

N At Ars

po?

F(GHAH 8:1’ 81p+At= Opts /1‘1+Ar) =0 (83)

PP _
Glen, &'+ ars Opi+ats Aivad =0

(PEP)
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Fig 3a  Uniaxial stress-controlled test used for identification (6).

The integration algorithm first makes an elastic prediction, in order lo decide
il the increment is (E){PE) or (EPAPEP), and then makes a plastic prediction
to choose between (EP) or (PEP) integration. The algorithm presented hereafter
has been implemented in the Code Aster®, developed at Electricité de France
(5). The three nonlinear implicit systems of tensorials equations (81, §2, §3) are
solved by a Newton method.

6 Comparison with Experiments

We use the following definitions for isotropic and kinematic hardenings

ACG -
600 -2-" Mpa

A Experiment
e This paper

AeP
. i , , L 2.
0. 0.2 0.4 0.6 0.8 1. 1.2

Fig 3b  Cyclic stress—strain curve used for identification {12).
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Fig4  Circular loading. —— Steady-state simulation {this paper); — Steady-state experiment (10);
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The parameter identification is made using uniaxial curves taken from literature,
then the comparison with nonproportional data is made with previous work.
This is to test the robustness of the method. These results 2re presented in this
paper.

The parameter identification is made also on uniaxial or nonproportional
loadings. This is to test the precision of the method. The results are presented
in (15),

PR
R = D(A] "1% 4 Ry) "blklff)
= & &

P TR e o0 e D

= l —
X = Clse, — a,8,) e

6.1 Identification in uniaxial case

Uniaxial strain (12) and stress-controlled (6) tests have been used for the
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Fig5 Square loading. -~ Simulation (this paper) — Steady-state, only uniaxial identification used;

-- -~ Simulation (this paper) - first cycle; — Experiment {10) - Steady-state.

identification, as shown in Fig. 3a and Fig. 3b. For parameter identification the
software Sidelo is used (9).

S =800 Mpa A4 =341 Mpa C=353 Ry = 150 Mpa
C, =068 m = .264 o=0.122 b=11

0.2 Shmulation in multiaxial case

Strain-controlled tension—torsion tests have been reported (10) on circular,
square, one-step and two-step loading defined in the (¢, y/,/3) plane for a 316
stainless steel, at 20°C. Figures 4-7 show the results of simulations obtained
by our model at steady states in the (o, ./37) plane and in the (s, £) plane for
Ag,, = 0.8%. We compare these results with experimental data given in (10).
However, note that the data concerning circular loading is obtained for

400 200 0 200 400 0.4 0.2 0 0.2 0.4
Fig 6 One-step loading. —— Simulation (this paper) — Steady-state, only uniaxial identification

used; - -- - Simulation (this paper) — first cycle; -— Experiment (10) — Steady-state.
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TFig 7 Two-step loading, —— Simulation {this paper) — Steady-state, only uniaxial identification

used; --- - Simulation (this paper) — first cyele; — Experiment (10) — Steady-state.

Ag,, = 1%, so in this case, the simulations and experimental data have been
reporied on two differents figures, with differents scales.

Constant tension cyclic strain torsion tests for the study of ratchetting have
already been reported (11). Figure 8 gives a comparison for axial ratchetting
between our model and two other constitutive laws. The first one is a Chaboche
model with two kinematical variables (12). The second one is a two kinematical
Chaboche law modified by Burlet-Cailletaud with the introduction of a radial
fading memory (13, 14). It is worth noting that for this second model,
tension—torsion tests have been used for identifications.

7 Conclusion

A cyclic elastoplastic constitutive law is proposed. Only uniaxial identification
is used. This model gives much better results for ratchetting compared to the
classical Chaboche model. Compared to models identified on muitiaxial data,
using a nonproportional parameter which is not the case for the present model,
acceptable resulis are obtained. However, for the case of square loading, we
believe the over-hardening has not been taken sufficiently info account, even if
the uniaxiat data used for identification is not of the same sample as the multiaxial
data.
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