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ABSTRACT A non-local stress condition for crack initiation and propagation is proposed and
applied to several particular cases. Brittle failure initiation for notched elements under complex
loading (Modes 1 and 11} is considered. Values of ¢ritical load and crack orientation are predicted
from the non-local condition, which is applicable to both regular and singular stress concen-
trations. Both monotonic and variable loading cases are discussed and conditions for fatigue
crack initiation and propagation are proposed. The resulting fatigue crack growth rates are
derived starting from the proposed damage evolution rule. The damage evolution for in-phase
and ous-of-phase bending and torsion is discussed.

1 Intreduction

A major problem in fracture mechanics is associated with the formulation of
sufficiently simple and accurate conditions of crack initiation and growth in
areas of stress concentration. The problein is important in view of the need for
reliable predictions of structural elements involving multiaxial stress states, The
actual strength predictions are usually based on local stress conditions at
non-singular concentrations generated by holes, notches, etc. On the other hand,
for existing cracks with singular stress concentrations at their tips, the crack
growth is predicted by the process of critical evaluations of the elastic energy
release, the strain energy density factor or critical crack opening (1-7). There
is no unique condition applicable for both regular and singular stress concen-
trations. The aim of this paper is to propose such a condition and demonstrate
its application to a variety of particular cases, including monotonic and variable
loading.
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The condition proposed in this paper is expressed in terms of a non-local
measure of stress intensity specified over an assumed finite damage area,
representative of the material considered. Multiaxial stress states can be simply
analysed for prediction not only of initiation but also of orientation of cracking.
For a non-stable crack growth such initiation will inevitably induce a global
failure of the element. For variable loading, the fatigue damage accumulation
is predicted by specifying proper non-local damage evolution rules and crack
initiation conditions. These rules could be applied for predicting fatigue
endurance, crack initiation and propagation. In this way, we avoid separate
formulations of fatigue crack initiation and propagation criteria, usually
proposed in the literature.

In Section 2, the non-local condition will be formulated and applied to the
study of crack initiation in notched elements. In Section 3, fatigue damage
evolution will be considered and the resulting crack growth criteria will be
derived. In Section 4 the cases of in-phase and out-of-phase bending and torsion
cyclic loading are considered.

2 Criterion of Initiation and Propagation of Cracks in Plane Structural Elements

We introduce a local polar coordinate system (r, ¢) whose origin is placed at
the point x = (x,, y,), Fig. 1, referred to a global reference system (x, y). The
point X, is located at the crack tip or in the case of a rounded notch or hole,
at the expected crack initiation point.

A proposed stress criterion of brittle failure is based on the assumption that
initiation or propagation of cracking occurs when the mean value of the
decohesive stress over a specified damaged segment d, reaches is critical value
(12):

d,
R; = max R(o,, 1,) = max l:—l § Heo.td dr] =1 (n

(¢, Xg) (9, Xp) o o

where R, is the failure factor, R(q,, 7,) is the non-local failure function, (19 9
are the normal and shear stresses on a physical plane, d, is the non-locality or
damage zone corresponding to a characteristic size associated with microstruc-
ture, for instance grain size, x, is the origin of a local coordinate system (r, @),
specifying the crack initiation point. The local failure function F(o,, 1,) is an
homogencous function of contact stresses o, 7, of the first degree. Let us note
that equation (1) allows us to determine not only the critical load value but
also the location and orientation of the initiated crack. In fact, maximizing
equation (1) with respect to x, and ¢, both location and orientation are specified.
In the case of low stress gradients, the criterion (1) can be replaced by

R; = max R(s,, 1,) ~ F; = max F(a,, 7,) = 1 (2)
(. Xg) (e, X;)
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(Xo,Yo)

Fig 1 Local polar coordinate system (r, ) with its origin located at the expected crack initiation
point. The stress components o, 7, induce material decohesion.

where F is the local failure factor, and corresponds to the usual local stress
conditions of the most intensely stressed elements.

When the maximal tensile condition is used then, analogous to the Novozhilov
condition (8), we obtain from equation (1)

1 %a,
R; = max R(g,, 7,) = max | [ dr|=1 (3)

{40, %) (9, Xo) dy o 0.

The condition (3) follows from the assumption that the effect of shear stress on
material decohesion is negligible. This assumption, however, is valid for the
case of Mode I stress state prevailing near the crack or notch tip. For Modes
IT and III, the shear stress effect may become significant and cannot be ignored.
For a general case for combined loading, the following local failure function is

proposed
2 27)1/2
F(G,, T,) = [(‘1) 4 (T—) ] , 6,30 (4a)
O’C TC

Flo,, 1,) = Il a. =0 (4b)

n

c
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where o and 1, denote the critical rupture stresses of the material in tension
and shear. The crack initiation condition is now expressed in terms of
nondimensional stresses a, /g, and 1, /7,

1 4
R; = max R %, D) = max | — | F ﬂ,ﬁ dr|=1 (5)
(0, %) g, T, (9, Xo) dO 0 g, T

The diagram of several failure functions F(o,/a.,1,/t) — | =0isshownin Fig. 2.

In Fig. 2a the elliptic condition equation (4a) and the shear condition equation
(4b) are shown in the plane (g,, t,). Drawing the stress circles, the extremal
planes can be specified as the tangency points of stress circles, the failure function
being the envelope to these circles. The planes «, and o, shown in Fig. 2 are
the extreme planes. On the other hand, in the tension régime, only one extreme
plane exists as all stress circles are tangential to the failure surface.

Figure 2b presents the Coulomb condition

1
F(o,, %) = — (It,] + 0, tan ) ©)

<

combined with the tension condition
F(o,, 7,) = 0,/a, (7

The present condition accounts for the effect of friction drag on existing cracks
under applied compressive stress, thus requiring larger values of 7, to produce
further crack growth. This condition can be very important in the analysis of
cracking of brittle materials deforming in compressive stress regimes. Further,
Figs 2c, d present purely shear and tensile conditions. Our analysis in this paper
will be solely concerned with the failure condition equation (4), Fig. 2a.

The material parameter d, specifies the averaging domain of the failure
function (damage zone). This parameter can be identified by requiring the
equivalence of the Griffith-Irwin condition and the non-local condition equation
(1) in the case of plane cracks in a sheet under remote tension. The stress state
in the front of crack tip is then specified by the following relation (3)

1
g;; = \/T; [K[n“sj(‘P) + Kunb.‘j(‘r")] (8)

where r, @ are polar coordinates centred at the tip of a crack, a;(¢), bj(¢) are
combinations of trigonometric functions. The stress intensity factors K,, and
K, are defined as follows

Klo + !IK[[D = linl [\," 27”' (GGU + irrﬂ)] (9)

p=0r-0+

For the case of a tensile crack, the Griffith-Irwin condition is

K!o = K[nc (10)



266 MULTIAXIAL FATIGUE AND DESIGN

©
W

ASYMPTOTIC COEFFICIENTS A, AND Ay
& o
r o

45 80 135 180
NOTCH ANGLE 28 (deg)

Fig 3 The variation of asymptotic coefficients 7| and /|, with the notch angle 2.

Assuming the crack propagation to follow the crack plane, we obtain, by
identifying equations (1) and (10) (11)

12K, \?
dozﬂ(—&l—) (11)

[N

where the critical stress intensity factor K, is the material parameter and o_,
7, are the usual rupture stresses determined for homogencous or nearly
homogeneous stress states, such as tension, bending, or torsion ignoring stress
gradient effect. '

Now some results concerned with the direction of crack propagation and its
initiation will be presented for the case of wedge-shaped notches of the angle
2f. The critical values of stress intensity factors K, and K, inducing crack
propagation or initiation will also be determined for a combined mode (Modes
[ and II) of loading, _

The calculations are based on the non-local stress eriterion equation (1), using
the relation specifying stress distribution near the notch vertex (9, 10)

Gy = (2“"}_}"K|“u(¢’) + (27”')72"Knbij(‘!’) (12

The general stress intensity factors K; and Ky, associated with Mode 1 and 11
occurring in equation (12) are defined by the relation
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Figd Dependence of erack propagation direction 0, on the loading mode K, /K, for varying ratios
o./T..

K/ +iKy= lim [2arYiay + i 2m)r,,] (13)
p=0r-0+

The asymptotic coefficients 4, and Z,; are obtained from the characteristic
equations:

sin 2(4; — x + (4, — 1) sin 22 =0 (14)

sin 2(4;, — D)2 — (4y — 1) sin 22 =0

where « = — f3. Figure 3 presents variation of 4; and /4, with the opening
notch angle 0 < f§ < n/2,

A maximum of the non-local failure function R(a,, 7,) with respect to polar
coordinate ¢ has been found using numerical procedure. The cracking was
assumed to occur in a plane normal to the plate, initiating from the notch
vertex. Figure 4 presents the directions of crack propagation determined from
the non-local criterion equation (1) for different values of stress intensity factors
K, and Ky, and for different values of ratio of rupture stresses ¢, /.. On the
abscissa axis, the values of the loading parameter i are presented. This parameter
1s specified by the relation



268 MULTIAXIAL FATIGUE AND DESIGN

2.0 -
; %' =0.0
] N =3 a7
] g =0
1.5
< 1.0 ]
£ ]
Y ]
0.5
] /
0.0 e e e e
-3.0 -2.0 -1.0 0.0 1.0
KIU/K|OC
Fig 5 The locus of critical stress intensity factors K, and K, in the reference system (K, /K.,
Kllo/Kloc)'
Kyo/Kyy = tan ¢, Ky, 2 0 (15)

The calculated values for the angles ¢, characterizing the propagation direction
are marked by points. The lines with arrows denote discontinuous variation of
the direction ¢,. The values of stress intensity factors K, and K,;, corresponding
to the onset of propagation are presented in Fig. 5 for the selected values of o,
and 1. Figure 6 presents the crack propagation directions in vertices of
wedge-shaped notches of angles 2 = 40°, for different values of stress intensity
factors K, and K, and for selected ratios ¢,/1,. The size of damage zone was
assumed as d, = 0.0001 m, which represent the property of polymethyl meta-
crylate (Plexiglas). Experiments were carried out for plane plexiglas elements
with wedge-shaped notches of angle 28 = 40° loaded in combined tension and
shear. The crack initiation orientation and the critical load were determined
for varying ratios of tensile to shear loads. Figure 6 contains the experimental
points presenting crack orientation and Fig. 7 presents the evolution of critical
values of stress intensity factors K| and Kj,. It is seen that there is a good
correlation between theoretical predictions following from the non-tocal con-
dition of equations ([} and (4) and experimental data.
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Fig 6 Directions of crack propagation at the vertex of wedge-shaped notch of angle 2 = 40 in
function of (K,/K,,) for dilferent values of o, and r, {{] - experimental data for plexiglas),

3 Crack Initiation and Propagation Condition For Multiaxial Fatigue Loading

In this section, we shall consider the case of variable multiaxial loading inducing
fatigue initiation and growth of cracks. There are numerous criteria for multiaxial
fatigue proposed in the literature (13~16). The assessment of fatigue crack growth
criteria was recently presented by Ramulu and K obayashi (26) who also provided
comparison with experimental data. The importance of higher-order terms in
asymptotic expansion (T-stress eflect} was emphasized. In the present work, the
local failure function F(o,/s,, 7,/1.) discussed in Section 2 will now be used
together with the non-local condition equation (1} in order to assess fatigue
damage accumulation and crack initiation or propagation, The advantage of
this approach lies in the fact that the crack growth stage does not require
separate formulation but is described by the same type of damage evolution
rule to within the material constants. The non-local T-stress effect is naturally
incorporated in our formulation,

In the local coordinate system (r, @) with its origin at the point Xol¥g, Yol
Fig. I, the non-local damage condition can be written as

1 1 %
R, = max R, (”— J) = max [— [ F, (‘i fﬂ) dr:I =1 (16)
(e, X) Go To (@, Xt do o Gy Ty
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Fig 7 Critical values of generalized stress intensity factors &, and &, for wedge-shaped notch of
angle 2/} = 40 in the reference system (K /K,, K,;/K,-} (L1 — experimental data for Plexiglas).

where R, is the damage initiation factor. The damage accumulation occurs
when the averaged value of the local damage initiation function Folo,/og,1,/70)
over the damage zone d, exceeds the critical value. Here R, (s, /6, 1,/1,) is the
non-local damage initiation function measured with respect to its threshold
value R, = | corresponding to the onset of the fatigue process. The parameters
Gy, To specify the permanent fatigue strength of the material.

When small stress gradients occur, the non-local condition equation (16) can
be replaced by the local condition, namely

Ry = max R, (f—"-, E) = max F, (&, ﬁ) =1 (17

{, %) o To {2, o) %0 To

A form of the local damage initiation function Fy{a,/a,, 1,/1,) can be similar
to that of the monotonic local failure function F(e,/a,, 1,/1.), specificd by
equations (4, 6 or 7). The failure stress parameters o, 1. are now replaced by
fatigue stress parameters g, < a,, 14 < 7, (cf. Fig. 8).

Consider a domain Q in the plane (s,, 7,} bounded by the curve Fy = |
representing permanent fatigue strength and the local failure function Fo=1.
When the local condition applies, the fatigue damage accumulation occurs for
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(a)
A
d6, - loading
dtu - unloading
d6i ~ tensile toading
{b) dtis —~shear loading

Fig 8 Local failure and damage initiation curves: (a) loading/unloading conditions associated with
the function F — C < 0; (b) loading/unloading conditions associated with the functions ¢, < 0 and
¢, <0,

stress paths lying in the domain Q. Assume first, for simplicity, that
ap/0, = 14/1, = fso the curves Fy = | and F; = 1 are similar, Fig. 8a. Introduce
within € the one-parameter family of curves F = const. spec;ﬁed by equation
(4); then F = f for stress states on the fatigue strength curve Fy =1, F = F, = 1
for the failure states, and f < F < | within the domain Q. The local crack
initiation condition for multiaxial loading and small stress gradients is assumed

to be in the form
£, F f)" dﬁ :l
Fy = max A =1
e .[f ‘(lf I~/ (18)
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where the parameters A, and » specify the damage evolution rate, and

4f = dF for dF>0 and F-—f>0 (19)
0 for dF <0 or F—f<0
I (fo,do, 1,dt
— 2"+ 257} for g, 20
oF F( 2 2 ) n =
dF = E}? dg'" + S—F- dT" — | g, T, (20)
T
! " - {dr,| for a, <0

The damage accumulation rule equation (18) specifies the scalar damage measure
F, whose critical value, Fy = 1, corresponds to the initiation of a macrocrack
on the critical plane. The damage is assumed to accumulate only for stress path
portions directed in the exterior of the domain bounded by the curve F = const.
corresponding to the stress point P, and to depend on the distance of P from
the fatigue onset curve Fy = 1, In fact, referring to Fig. 8a, we have

Fﬁj‘ n _ P PO n (21)
1—7/) \P.P,

For the non-local condition, assume the R-function to exceed the threshold
value R corresponding to R,; = | and to be less than the monotonic failure
value R = R; = 1,50 that R < R < 1. The crack initiation for multiaxial loading
is assumed to be generated by the condition analogous to equation (18), namely

R — e
¢, (R—RY" dR
Ry = max f;;(r>—-—]=1 (22)
‘ [b '\1-R/ 1-R

(e, xp}

where R, is the non-local damage accumulation measure. The existing crack
growth is specified by a similar equation

R — R\ dR
da = max [Az (——R) ——:} (23)
(m‘ xu) .E b R 1 - R

where A4, is the crack growth material parameter. The growth factor dR is
specified according to equations (19) and (20), namely

— [ dF dr 24)

When similarity of the curves Fo =1 and F; =1 is not preserved, that is
og/0. # 14/1,, the damage evolution rules in equations (18) and (22) remain
valid. However, along the fatigue onset curve Fy =1 the value of [ is not
constant but depends on the stress state; thus [ = f(a,, ).

The loading/unloading conditions specified by equations (19) and (20) are
associated with the curves F = const. An alternative way of generating these
conditions could be proposed by introducing the unloading and loading domains
in the stress plane (g, t,} specified by the inequalities, Fig. 8b
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d)l = &n - 0':({) = 0 (25)

¢, =15 —12() <0

where a, (1), 7,(f) are the actual values of the tensile normal stress, a, (1) > 0,
and the shear stress, while &, and %, are the subsequent stress stales, The
conditions of equation (25) specify four loading and unloading angular domains
L II TI4, 1V at the stress point P, moving with P in the stress plane. The damage
accumulation thus occurs when

¢l = 0! d()bl > 0’ or 6'" = JJT(E)’ dO'" > 0

(26)
¢,=0,d¢, >0, or %,f = T,Z,(t), 7,d7, >0
We have therefore
. OF oF
e dé + - d2 27
d 60_“ do-" + at" dT" ( }
where
46 = dg, for d¢,20 and 6,20
= for do, <0 or a,<0
(28)

£ dr, for t1,de, =0
T =
"0 for t,dr, <0

Obvicusly, more complex loading/untoading conditions could be formulated
by introducing unloading domains dependent on the prior prestress; similarly
to multisurface hardening description, (17).

A general form of crack initiation condition can be stated as follows

Ry

Ry = max [j A, P(R) dR] =1 (29)
[(cN xg) L]

where Ry is the damage accumulation measure and W(R) is the damage

accumulation function. The crack propagation condition is formulated similarly

da = max [A4,¥(R) dR] (30)
{9, Xo)
These conditions can obviously be restated in more familiar forms in terms of
maximal and minimal stresses or stress intensity factors. Consider, for instance,
the case of tensile cyclic loading with minimal stress o, = 0. The crack initiation
condition equation (18), now provides the critical number of cycles

JII'IHX

——13) for o, =0 31)
0

g.—0

log N = —(n+ 1) log(

where o, is the fatigue strength limit and o is failure stress.
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Fig9 Maximal stress dependence on number of cycles for varying values of the exponent # resulting
from equation (31).

Figure 9 presents the maximal stress dependence on the number of cycles for
varying values of the exponent n resulting from the condition of equation (31).
The crack propagation condition in Mode T due to cyclic loading can be
generated from equation (22) in the form
da _ . [(<Km ~ Ku,>>"“ B (<Km - K.h>)"* } -
dN K.— K, K.— K,
where K, and K, are the maximal and minimal values of the stress intensity
factor in particular loading cycle, K, is the threshold value of K corresponding
to onset of fatigue, K, is the critical value of the stress intensity factor, C and
n are the material parameters. The bracket symbol < > denotes: <g> =g¢
for g> 0 and <g> =0 for g <0. It is seen that equation (32) is similar to
familiar rules of fatigue crack propagation due to Paris (20)

da - CK
dN'— max

or due to Donahue et al. (21), Klesnil and Lukas (22), or Cooke and Beevers
(23), namely

— K ;)" = CAK)" (33)

da _
dN
where K, = (K, — K;,)/2.

Co(Ky' — Kip) (34)
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of o /7.

Assume now that the damage accumulation function has the following form

_(R_R)nfl

Oy

(1-R) (35)

The corresponding fatigue crack propagation condition for tensile cyclic loading
is expressed as lollows

da ; <Km:1x - Kth> ! <Kmin - Kth> g
dN Bl CI:( Kc - Kmax Kc — Kmin (36)
This condition is similar to that proposed by Priddle (24), namely
da AK — K\
—=C|— C’ 37
dN (Kc - Kmax) * ( )
and by Yarema (25)
da Kmax B th i
H" B CO (KC - Kﬂ)ﬂt) (38)

where C, C', C, and ¢ are material parameters.
A more complex form of the damage accumulation function



STRESS FAILURE DAMAGE ACCUMULATION 277

_ (R—RY (R — Ry

\P(R)_(I_R")n+1 (1 —ﬁ)"+1'—'(R—R)"+1 (39)

provides the following crack propagation condition

ifi = _-C <Kmax — Kip?" — (Kiin — Kin)"
dN (K. — K,)"
(K, — K,)" — (K, 0 — K D"

l < max 40
i (Kc o th)” - <Kmin - th>” ( )

This condition is similar to that derived by Cherepanov (7) who used the concept
of constant dissipation rate per unit crack area growth, namely

da |:KI;':‘|8.( - <I<min>2 K? - KZ :I
+ In

SRR ‘_'C Kz max (41)

dN - Kf - <Kmin>2
The predicted rates of crack growth from the conditions of equations (32, 36,
40) are plotted in Figs 10a, b, c. It is seen that proper formulation of the non-local
crack propagation condition is essential in providing quantitative description
of fatigue crack growth.

This [racture initiation and propagation criterion makes it possible to analyse
any type of variable loading. For different valucs of the normal to shear stress
ratios the calculations of crack growth per cycle of loading were carried out.
The stress intensity factor values vary according to the following relationships

K,, = K, cos y, Ky, = K, sin y, ¥ = (1) (42)

and they can be represented in the (K,,, K,;,) plane as an ellipse with semiaxes
equal to K, and K,. An increment of crack length per cycle versus the loading
ratio K, /K = tan 1/ is shown in Fig. 11 for different values of material failure
stresses o, and 1. The following values are taken in the present case as in
example: o, = 040, 1, =041, n =2 and K? + K2 = 0.25K2_. It should be
noted that in this mode of loading the crack growth rate is greater for in-plane
shear than for simple tension.

4 Fatigue Strength of Elements Subjected to Combined Bending and Torsion

4.1 In-phase loading problem

Consider now a cylindrical specimen subjected to combined cyclic loading by
bending and torsional moments. These moments acting in-phase induce axial
and shear stresses of amplitudes o, and 7, and mean values o, = 7,, = 0. Assume
the circumferential stresses to vanish, o, = 0. Using the Mohr’s circle, Fig. 12,
the stresses can be represented as follows

6, = 0,, + kcos2p; 1, = ksin2¢ (43)

where
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Tl
To

Ta

Fig 12 Mobhr circle representing stress state in an element under bending and torsion.

The local damage initiation condition equation (17) (for the case of small stress
gradients) now has the form

3 2 \2 2
R, = max Ry = max I:(J) + (”) =1 (44)
() () o To

Using equation (43), we have

ol a\* (ol e
( f + 12 cos2¢ + 5“) (I“ + tf) sin*2¢
R, = max 5 + 3 =1 (45)
() To To

The condition of maximum of R,, d3R,/d¢ = 0, provides
sin2¢ =0 (46a)

or

Cos2p = —— 2 (46b)

? =7k

where = a,/7,.

The condition of equation (46a) is equivalent to the condition of maximal
normal stress, since for equation (46a) there is 1, = a,, = a,, Fig. 12. Here 7,_
and o, are the limit values of stress amplitudes o, and 1, for the case of separate
action of torsion and bending moments. The local condition equation (45) can
now be expressed as follows
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Fig 13 Fatigue onset curves in the plane (0./0,cy 1,/7,;) for different values of y* = \/’300,&0
(T — experimental data for hard steel).

V=32 (47)

Let us note that equation (47) is similar to the condition proposed by Gough
et al. (19).

The condition of equation (46b) leads to the elliptical condition of Gough
and Pollard (18)

2 2
0-.'] Ta
ﬂl’z =—+—== 1 (48)
0-E.C T:lc
where
2 2 4(’12 - 1)

4 > Tae = Tp

In a general case of combined bending and torsion, the fatigue onset condition
can be expressed as follows

max (Y, ,) = 1 (49)

When < 1, the maximal normal stress condition equation (47) applies; when
0> \/5 the elliptical condition (48) is valid. For intermediate values of 1,
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Fig 14 Dependence of damage accumulation factor R, on the loading phase shift angle 4.

(l<p< \/IE), the form of condition depends on the stress amplitude a,. In fact,
when

2 2
f‘a;,(%) =1 (50)

20, [ 0l

then the condition (47) applies, but when equation (50) is not satisfied, the
condition (48) is valid. Figure 13 presents the fatigue onset curves in the plane
(0,/0,c, T./1,.) Tor different values of 5. The experimental data for hard steel
(0,0/7.. = 1.6) provide good correlation with our prediction for ﬁu =29,

The predicted crack orientation ¢, measured with respect to plane normal
to specimen axis is expressed by the formula

1 2
P, =19 — g, Oy = 3 arctan la (51)

a

where ¢ is specified from the condition of equations (46a) or (46b). As for
equation (46a) where ¢ = 0, there is only one critical plane. On the other hand,
the condition of equation (46b) implies existence of two critical planes of crack
initiation.
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42 The case of out-of-phase loading

Consider now a cylindrical specimen subjected to bending and torsion and the
stress loading program

o(f) = o, sinfwt), () = 1, sin(fer — §) (52)

where a, and 1, are respectively the amplitudes of the normal stress due to
bending and of the shear stress due to torsion, § is the phase shift angle.

Let us use in this case the local crack initiation condition of equation (18)
with 6, = fo_, 1, =f71., 0 < f< 1. Then we have Flo,, 1,) = fFy(o,, 7,) and .
the damage accumulation measure R, is given by equations (18) and (27).

Figure 14 presents the dependence of damage accumulation factor R, on the
phase shift angle 6. The value of stress amplitude was assumed for which the
damage factor F; for § = 0 reached maximum. It is seen that the phase shift
angle J may increase or decrease the fatigue strength depending on the value
of o /7.

5 Concluding Remarks

The non-local brittle failure criterion discussed in this paper provides the critical
stress value for crack initiation and also for existing crack propagation in
structural elements under complex loading conditions. It can also be used to
determine the crack initiation or propagation direction. Both regular and
singular stress concentrations can be treated in a uniform way, with transition
to local stress criteria for small stress gradients or to energy criteria for singular
stress distributions. The main material parameters are o, 7, and dy. The size
dq of the damage zone is specified by a malterial microstructure, for instance
grain size. The failure function F(o,, 1,) provides the assessment of failure on
specific physical planes with its maximal value reached on one or two planes,
Tensile shear or combined failure modes may occur depending on values of o,
7, and d,.

The present approach may therefore prove useful in engineering calculations
of onset and propagation of cracking in structural elements undergoing brittle
fracture. Its extension to the case of cyclic loading and fatigue problems discussed
in this paper provides new fatigue conditions which require further study. It
should be emphasized that both fatigue crack initiation and propagation rules
are generated by the same type of non-local condition.

When plastic deformation predominates, the approach should be modified
to account for stress redistribution due to the plastic strain field. The failure
mode is then mainly governed by strain localization effects and generation of
shear bands which become consecutively the failure zones. The low-cycle fatigue
conditions should be formulated taking account of transient or steady elasto-
plastic stress distributions.
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