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Abstract

In structural engineering many components are subject to cyclic loading conditions in-
volving multiaxial—especially biaxial-—stress states. In order to determine the resulting
fatigue strength of the applied material under complex loading one must consider not only
the various mean and alternating stress components and the number of cycles, but in addition
also the time-dependance of the stress (wave form), the frequency and the phase-difference
between the stress components.

This paper deals with investigations carried out on thin-walled tubular specimens out
of steel St 36, loaded by cyclic internal pressure and axial forces. The objective of these
investigations was to find out how the fatigue strength under in-phase and out-of-phase
loading by two aliérnating normal stresses is influenced by the wave form of the stress
vibrations (sinusoidal, triangular, trapezoidal) and by the ratio of frequeney. The fatigue
limits under various stress combinations as determined experimentally are then compared
with theoretical results obtained by a ” Modified Octahedral Shear Stress Theory” which was
developed for complex fatigue loading conditions.

1 Introduction

Technical components are frequently subjected to multiaxial fatigue loading. Their endurance
limit depends on the stress components as a function of time, frequency, phase difference and
wave form.

In previous experiments, mainly a load combination of bending and torsion was.investigated
because of its practical importance [1,2). In this case the material loading is determined by
normal and shear stresses. Later on fatigue tests were carried out with a load combination of
two normal stresses which were also principal stresses [3-5].

However, in certain areas of application there can occur stresses of any wave form and ratio
of frequency. Therefore, the goal of the investigations presented was to determine the effect of
different wave forms and frequencies of in-phase and out-of-phase alternating stresses on the
fatigue limit of the materials applied. Along with the experimental investigations theoretical
considerations were developed to predict fatigue failure. Based on the assumption of the ex:
istence of a critical plane, the shear stress amplitude was considered to be responsible for the
material behaviour (Modified Octahedral Shear Stress Theory).
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2 Experimental Tests

2.1 Material and Specimen

The multiaxial fatigue tests were carried out using tubular specimens of steel St 35 annealed
(9109C/ 45min/air) as shown in Fig. 1. The material data determined by tensile tests and’
uniaxial fatigue tests, respectively, can be seen from Table 1. To achieve a high quality surface,
all specimens were honed at the inner surface and chemically polished at the outer surface.
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Figure 1: Thin walled tubular specimen

| i Statiic strength
Yield stress Rpo2 = 340N/mm?
" Ultimate stress Ryn = b43N/mm?

Fatigue strength

| : Alternating tension-compression ow = 230N/mm?
: ~ Pulsating tension Ogen = 360N/mm?
; Alternating torsion w = 130N/mm?

. 7 Table 1: Material data of sieel St 35
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2.2 Test Device

The test device applied was a 2-channel servo-hydraulic testing machine as shown in Fig. 2.
The test specimen can be loaded by longitudinal and circumferential normal stresses in-phase
as well as out-of-phase, and with different wave forms. The construction of the testing device
makes it possible that under internal pressure the specimens are subject only to circumferential
stresses, without additional longitudinal stresses. The longitudinal stresses can be applied sepa-
rately by means of a hydraulic cylinder, independent of the internal pressure. Thus the desired
independence of the two normal stress components regarding wave form, frequency and phase
position is assured. In order to achieve optimized load-time-functions, that is, to minimize the
deviations between the nominal and real values especially in the low internal pressure range, the

fatigue tests were carried out with a relatively low test frequency of maximum 1.3 Hz in relation
to internal pressure.
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Figure 2: Test equipment for bié.xial loading

2.3 Test Program

All tests for determining the influence on the wave form and different frequencies on the fatigue
endurance limit were carried out under pulsating internal pressure and pulsating axial tension.
In addition to the sinusoidal wave form a triangular and trapezoidal form of the load-time-
function was chosen for both test series (see Table 2). The time of the load increase of the

trapezoidal signal was 10% of the wave period. For a period of 27 this is equal to a load ascent
time of # /5.
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In the test series on the influence of the wave form, the ratio of the mean stresses, amplitudes
and frequencies of the two normal stresses in longitudinal and circumferential direction was kept
constantly at the value 1:1. Table 2 gives a survey of the phase difference chosen hereby. The
load cases with phase angles in brackets were controlled spotwise, since for synchronous loading
and for a phase angle of 180° an influence of the wave form was not to be expected. Contrary to
the test series concerning the influence of the wave form in combination with s phase-difference,
in the second test series the variation of the phase angles was confined to 0° and 90° The ratio
of frequencies of the longitudinal and the circumferential stresses was chosen 2:1, in relation to
the longitudinal tension. The other test parameters correspond to those of the first test series.

3 Test Results

3.1 Influence of the Wave Form

The results of the experimental investigations about the influence of the wave form in com-
bination with a phase difference on the fatigue limit of the material are shown in Figs. 3 to
7.

As from Fig. 3 for the sinusoidal load oscillations can be seern, the fatigue strength amplitude
of the circumferential stress decreases with increasing phase angle,

For time-saving reasons, the dashed Woehler curves for synchronous loading and for 180°
phase difference were taken from the corresponding loading cases with triangular stress oscillation
(see Fig. 4), since for these loading conditions theoreticaily no influence of the wave form should
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Figure 3: Test results for sinusoidal loading
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oceur. To ensure this assumption, for each loading case two specimens were loaded sinusoidally,
and the test data were compared to the dashed Woehler curves. The good agreement hetween
the test points and the Woehler curves justifies the assumption made above.

The fatigue strength amplitude of the circumferential stress for in- phase loading was o, A=
o14) = 160N/mm?2 On the other hand, for a phase difference of 900 the the fatigue stress
amplitude was o, 4 = 140N /mm?, which means a 12.5% decrease against the in-phase loading. If
the phase difference is further increased to 1209, the fatigue stress amplitude decreases still more
£0 gya = 129N/mm?. Finally, the minimum stress amplitude occurred for a phase difference
of 180° and was oua = 120N/mm?, thus measuring a 25% decrease compared with in-phase
conditions.

" The results of the fatigue tests with triangular load oscillations are shown in Fig. 4. Contrary
to the sinusoidal loading, the maximum fatigue stress amplitude occurred at a phase difference
of 90° and was ou4 = 162N/mm?. This is slightly more than with the in-phase loading,
where the stress amplitude o,4 = 160N/mm? was the same as for sinusoidal oscillations. At a
phase difference of 120° the maximum stress amplitude of 140V /mm? is again higher than with
sinusoidal stress amplitudes, whereas a phase difference of 180° yields for both wave forms the
same value of oy 4 = 120N/mm?. '
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Pigure 4: Test results for triangular loading
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‘The Woehler diagram in F4g. 5 shows the results of the fatigue tests with trapezoidal load
oscillations. Again the Woehler curve for synchronous-loading was taken from the corresponding
Woehler diagram for triangular stress oscillations, this being controlled by two triangularly
loaded specimens.

Already at a phase difference of 90° the maximum stress amplitude is only 0,4 = 120N Jman?,
a value that occurs with sinusoidal and triangular loading only at a phase difference of 180°.
The test data of two additional specimens for 180° agree well with the Woehler curve for 90°
phase difference. It can therefore be assumed that the Woehler curve for 909 phase difference
represents also the loading with phase differences of 120° and 1809,
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Figure 5: Test results for trapezoidal loading
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Comparing the test results obtained from the three wave forms one finds the fatigue limit of
the circumferential stress amplitude in all cases under .synchronous biaxial loading by pulsating
internal pressure and axial tension to be oy q = 160N/ mm?. The fatigue strength of the material
under uniaxial pulsating tension is oge, = 360N/mm?, corresponding to a fatigue amplitude of
osen/2 = 180N/ mm?2, The decrease of the biaxial fatigue strength compared with the uniaxial
is probably due to the effect of the second mean stress in the biaxial case. The influence of
the wave form in combination with a phase difference on the fatigue strength can be seen in
Figs. 6 and 7. Here the Woehler curves for triangular, sinusoidal and trapezoidal loading and
a phase difference of 90° and 1200, respectively, are compared with each other. Additionally,
the fatigue strength under synchronous loading is marked. The Woehler curve for trapezoidal
loading in Fig. 7 was taken from Fig. 6, since due to the test results the influence of the phase
difference for 6 = 90° and § = 1200 is nearly identical. For a phase difference of 90° as well as
for 120°, the Woehler curves for sinusoidal loading lie in between., With regard to the material
stressing, the loading conditions with triangular wave forms are the most favorable case, those
with trapezoidal wave forms the least favorable one.
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Figure 6: Influence of wave form (phase difference § = 90°)



— 61.9

200
H/mm’ \Q
180 \“\W
\0\
'bg 169 \ \\ \‘Ob/\v ﬂ.._duﬁ(6=“°!
g
=
. -:-E 140 \‘& \9\1; f\v
i « —~—
. 120
; /3]
! 7]
' [
w. P
| o 10
Ratlo of amplitudes  ¢,,/0,, = 1/1
80 4 Ratio of frequencies t/f, = 1/1 .
j_ Phase difference §=90°
- 60 S —_ .
B 0t 2 5 w0 2 5 1% 2 5
' Cycles N

Figure 7: Influence of wave form (phase difference § = 1200)

The ratio of the fatigue strength amplitudes ¢, 4 for out-of- phase loading and in-phase

loading under triangular, sinusoidal and trapezoidal load oscillations, respectively, yields the
following values:

§=90 oy4(6)/oua(0) =1.01 ;0.875 ;0.75
§ =120 ou4(6)/0ua(0) =0.875 ;0.81 1 0.75
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3.2 Influence of Different Frequencies

Figs. 8 to 10 show the results of the second test series, carried out under pulsating axial tension
and internal pressure. The ratio of frequencies of axial tension to internal pressure was 2:1. From
these test data, on the one hand the effect of different frequencies on the fatigue strength can be
determined by comparing the resulting fatigue stress amplitude with initial phase difference zero
to that of the corresponding synchronous case, and on the other hand, the influence of an initial
phase difference can be found. For sinusoidal loading without initial phase difference (§o = 0)
the fatigue stress amplitude amounts t0 ous = 131N/mm? (Fig. 8), as against 160V fmm?
for equal frequencies. By an initial phase difference of 6¢ = 90° the fatigue stress amplitude
increases to o, 4 = 139N /mm?.
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Figure 8: Test results for sinusoidal loading (frequency ratio 2:1)
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In the case of triangular loading without initial phase difference the fatigue stress amplitude °
is oy = 144N/ mm? (Fig, 9). By imposing an initial phase angle of &, = 90° the fatigue stress
amplitude decreases slightly to 141N/mm?2. The strongest effect of different frequencies oceurs

. with trapezoidal loading. Without initial phase difference the fatigue stress amplitude is Tud =

LLON/mm? (Fig. 10) (this is nearly equal to the minimum fatigue stress amplitude of 120V /mm?

~under equal frequencies for sinusoidal and triangular loading and a phase difference of 180%).

With an initial phase angle of &, = 90° the fatigue stress amplitude is Tua = 126N /mm?, which
is slightly higher than without initial phase difference.
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Figure 9: Test results for triangular loading (frequency ratio 2:1)
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Figure 10: Test results for trapezoidal loading (frequency ratio 2:1)

It thus can be stated that in case of a frequency ratio 2:1 between longitudinal and cir-
cumferential stresses, the fatigue strength generally decreases compared to loading with equal
frequencies. Again the decrease is highest for trapezoidal and lowest for triangular stress waves.
An initial phase difference of § = 90 results in a small increase of the fatigue strength for
sinusoidal and trapezoidal loading, and a small decrease for triangular loading,.
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4 Modified Octahedral Shear Stress Theory MOSH

4.1 Basic Considerations

There are several proposals to determine the fatigue strength under complex loading conditions.
In general, they are either based on the assumption of an integral material stressing expressed
in energy terms, or on the existence of a critical plane where material failure occurs. Due to
the integral fatigue method [6,7], the entire stress state is decisive for material failure, whereas,
according to the critical plane method [8-10], only the stresses in a certain representative plane
are considered responsible for failure. The Modified Octahedral Shear Stress (MOSH) theory
used here, developed from the Octahedral Shear Stress Theory (OSH), is based on the latter
method. While the application of the normal Octahedral Shear Stress Theory is confined to
loading cases with fixed principal stress directions, the modified method can also be applied to
loading conditions with rotating prineipal stress axes.

According to the Octahedral Shear Stress Theory the material behaviour is determined by the
stresses in the octahedral plane, in particular by the amplitude of the shear stress. In multiaxial
fatigue loading with constant principal stress axes, i.e. with fixed position of the octahedral

Dlane, the fatigue stress amplitudes predicted by this theory agree well with experimental results

[6]. Based on this, the theory is modified by the assumption that, also in case of rotating
octahedral planes, the shear stress amplitude T, in the plane of the maximum oscillating
octahedral shear stress (y'¢'—plane) can be considered as the decisive factor determining the
material behavior. Figs. 11 and 12 show the position of the (7'¢")-plane and, as an example,
the shear stress path during one complete load cycle. The shear stress amplitude determined

from the stress path is then compared with the value 'r.,i,,,rA which characterizes the material

behavior in the (y'¢’)-plane. This material value is derived from the fatigue limit oy of the
material under alternating stress or the fatigue stress amplitude o4 = f(om), depending on the
mean stress oy, respectively. Material failure is then to bé expected if

Ty'pla = TytylA (1)

4.2 Amnalytical Procedure

Since the initiation of a fatigué fracture generally occurs at a load-free surface element, the
calculation method is confined to biaxial stress states (o> = o3 = 0). In this case the octahedral
plane merely rotates around the z-axis of the coordinate system (see Fig, 11). Therefore only
the angle ¢ has to be determined for evaluating the octahedral shear stress, The angle 7' has
the constant value 7’ = arccos(1//3). : _

The calculation of the fatigue shear stress amplitude is carried out by the following steps:

1. Determination of the (7v'¢')-plane

From the stress-time-functions the alternating stress components ay,.(t), oy,(t) and
Tway(t) can be separated to calculate the alternating octahedral shear stress Tw,oct{t}s
The maximum value Ty, oct,mae and the time ¢,,4, at which it occurs, ‘determine the (y'y)-
plane. Using the stresses 67 = 0u(tmas), cr;' = 0y(tmer) and 7‘;; = Tay(tmaz ), the angle
between the x-axis and the first principal stress axis at the time ¢,,,, i8
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between the x-axis and the first principal stress axis at the time tyq, 18

—-2rk

ok —of

‘ 1 = 0.5 arctan

and thus the angle ¢' is
@' = o1 + 45°

zho,

(Y ') -Plane

Figure 11: Position of the (7'¢')-plane

(2)
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2. Determination of the shear stress amplitude 7., in the (v'¢’)-plane

The shear stress amplitude 7,1, is taken from the stress path of the shear stress in the
(7'¢")- plane as half of the maximum stress range during one cycle (see Fig. 12)

' 1
Tylpla = EA?T‘ﬁo’,mam . (1)

Tyovl

'[:-Y}(Pru

Figure 12: Stress path of shear stress =, in (7'¢')-plane

3. Determination of the material value 7,14

In order to determine the value Tyrpra Which characterizes the material response, it is
assumed that in general fatigue loading the influence of the mean stress on the fatigue
stress amplitude can be expressed by an equivalent mean stress Tmeq. 1t is defined as the
larger one of the two stresses o, and o, respectively, which would generate the same mean

stress in the (7'¢’)-plane as it is caused by oem, oy and Teym together. From these three
stress components there results a mean normal stress in the (y/¢')-plane of

Tyrptm = $IN2 Y[0.5(Cam + Tym ) -+ 0.5(Tgm — Tym ) €08 200" + Ty 8in 2¢0'] (4)
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The equivalent mean stress for uniaxial fatigue loading is then from Eq. 4 with Tym =
Tzym = 0 B

o 2oem (5)
sin? @'(1 + cos 2¢')

Tmeg

Furthermore, to determine .+, 4, the uniaxial fatigue stress amplitude o4 is required. It
can be calculated approximately from the alternating fatigue limit oy, the ultimate stress
R, and the equivalent mean stress o,,., using the parabolic equation

o-A:avW,h—%’-‘f (6)

In case of purely reversed load stresses there is o4 = ow. The material value 7y,
considered responsible for fatigue behavior and fatigue fracture, can now be calculated by
the following transformation equation

Tyrota = 0.5 sin tp'a'A\/sinz 2¢’ + cos? /(1 + cos 2¢')?

5 Comparison of Test and Calculation Results

(7)

In the following the results of the experimental investigations are compared with the theoretical
predictions due to the calculation method MOSH. The values to be compared are the fatigue
limits of the circumferential stress amplitude o, 4, and as a quality measure of the theoretical
predictions the ratio

Tud test

Ty d,calculation

respectively the relative deviation

was taken.

C=1-

Tud test

Tyl caleulation

(8)

[

frequency ratio 1:1 |

frequency ratio 2:1

|

Wave form Phase oud [N/mm?] | gualezp.) | oua [N/mm? ous(eep.)
difference § | experimental | o,4{theor.) | experimental | o,4(theor.)
0° 160 1.09 144 1.17
triangular 90° 162 1.1t 141 1.04
1200 140 1.06
180° 120 1.17
o0 160 1.09 131 1.16
sinusoidal 900 140 1.07 139 1.10
1209 129 1.14
1800 120 1.17
trapezoidal 0° 160 1.09 119 1.14
909 120 1.17 126 1.16

Table 3: Comparison of {est results and theoretical predictions
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For the first test series concerning the influence of the wave form in combination with a phase
difference on the fatigue strength—with equal frequencies of o, 4 and o14—this value comes up
between C' = 0.06 and ¢ = 0.17 for the entire series, as can be seen from Table 3. 'This
means that the theoretical predictions result in slightly conservative deviations. The average
relative deviation between theoretically and experimentally determined stress amplitudes o, 4 is
C =0.125, )

There are similar results for the second test series concerning the influence of different fre-
quencies in combination with a phase difference on the fatigue strength. Again the theoretical
fatigue stress amplitudes 0,4 are somewhat lower than experimentally determined, as one can
see from Table 3. The average relative deviation in this case is ¢' = 0.128 with the theoretical
results again lying on the conservative side.
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