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1 INTRODUCTION

During the non-steady operation of components subject to thermal loads created
during start-up and run~down procedures, temperature-induced strains of an
essentially multiaxial nature occur as the result of non-constant temperatures.
In comparison with these strains, the influencé of mechanical loads from, for
example, internal pressure or centrifugal force, are secondary. The service li-
fe of components of this kind is, therefore, essentially determined by thermally
induced strains.

At the MPA-Stuttgart for a considerable time, detailed studies have been
conducted on the low&cycie—fatigue areas that suffer strain amplitudes beyond
the elastic limit. These studies have been concerned with major influential
variables and inter-relationships such as cycle time and cycle form, surface
properties, notches, temperature, and hold times. All . these experiments were
carried out on small test rods with mechanically’applied strains at constant
temperature. Temperature gradients were avoided in the specimens. The
application of results obtained with small specimens to large components is,
however, always subject to uncertainty as to whether the adopted procedure 1is
justified. In order to clarify this question, experiments were carried out with
thick-wall hollow cylinders which were subjected to alternating temperatures in-
cluding hold times. Circumferential grooves were used to provide a general in-
crease in local strains.

The tests with large-scale specimens constitute the consistant continuation of
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tests made earlier at the MPA Stuttgart in the low-cycle-fatigue sector.
Figure 1 shows a schematic summary of studies conducted up to the present time.

These large-scale specimen tests run concurrent with numerical calculations
according to the finite element (FE) method. They were to provide a deeper
insight into the deformation sequences during alternating plastification in
conjunction with creep.

To start, the material-mechanical basic features for the time-independent
elastoplastic deformation behaviour during cyclic loads and the time-dependent
creep problems are discussed in a special section.

This is followed by the discussion of the various theoretical formulations for
inelastic material behaviour presented in the preceding section using different
principle investigations. The results obtained with the FE method are compared
for verification with measuring results prior to transplanting the calculations
to realistic tests on the largescale specimens.

2 DEFORMATION BEHAVIQUR UNDER PLASTIC STRAIN

When using materials at increased temperature, inelastic deformations can be
frequently expected. 1In this context, we differentiate between time-independent
plastic deformation and time-dependent creep.

2.1 Time-independent deformation behaviour

In practical applications, irreversible deformations frequently occur by
repeating load cycles, so that, in addition to an overelastic deformation in the
same direction, the overelastic alternating deformation is of primary interest.

In order to be able to describe the elastoplastic deformation behaviour ‘
generally, we need, in addition to the Hooke’s law which expresses the elastic
proportion of strain by the stresses, the following postulates:
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- the yield condition, which decides on the onset of
plastic yield,

—~ the flow rule, which specifies the direction of plastic
flow,

-~ the hardening rule, which describes the increase of
deformation resistance as a function of plastic
deformation.

The yield condition is given by the selection of an appropriate plasticity
hypertheses, e.g. the von Mises yield criterion. This reduces the multiaxial
stress condition to an equivalent uniaxial stress condition with the equivalent
stress 6p .

The flow rule is associated with the yield condition. It links the plastic
strain proportion with the stress deviator. On the basis of the flow theory
usually applied, we must, in order to obtain the whole strain components,
integrate over the entire load path.

The hardening rule plays an important part in the elastoplastic alternate load,
since it specifies the point at which plastification occurs within the cycle
after a reversal of the load. In doing so, a material softening or hardening
with a change of the technological characteristics {(yield limit R., ultimate
tensile stress R,) per load cycle may be overlapped in the model. Two models
are used as hardening rules in the plasticity theory, which are to describe the
characteristic of isotropic and kinematic hardening. The two models are
compared by way of example of the uniaxial alternatiﬁg compression-tension tests
with constant strain amplitude in Figure 2. - The simplified bilinear
representation of the alternating behaviour shows with isotropic hardening,
that, after elastic loading or unloading, yield occurs whenever the current
stress has reached the maximum value from a preceding load in a reversed
direction. 1In doing so, the isotropic hardening model assumes an increasing
elastic range, until in the 1limit status, the behaviour would be completely
elastic. In contrast, the kinematic model shows that the elastic range for each
reversal is equal to twice the apparent limit of elasticity and that it remains
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constant.

Similar to the yield limit in the l-dimensional case, the existence of a yield
surface is assumed for the general 3-dimensional case. Reduced to a 2-dimen-
sional stress condition, the boundary for elastic material behaviour is given by
an ellipse via the von Mises yield criterium. Based on this prerequisite,
isotropic hardening means that the apparent yield surface expands to its origin
maintaining its form and direction, Figure 3a, while for the kinematic hardening
model, which keeps the elastic limit constant, the surface remains unchanged but
is subject to a translation with its shift represented by the vector {w}, Figure
3b.

The actual material behaviour, however, will not accurately follow one of these
two models. A refined method, for this reason, means a mixed hardening rule
where the translation as well as an expansion of the yield surface is assumed,
Fiqure 4; practical applications, however, show that for cyclic loading, yield-
ing is sufficiently described by the kinematic model.

2.2 Time-dependent Creep

The basic understanding for this is obtained by experiments with uniaxial iso-
thermal model tests under constant load.

For an engineering assessment of creep phenomena, a constitutive connection bet-
ween the change of strain during time and variable stress at different tempera-

tures is needed.  In developing this type of a creep law, two options are avail-
able:

-~ the mechanical behaviour of the material explicitly
depends only on the current deformation status,

-~ the mechanical behaviour depends on the previous
history of deformation,

The formulation of a mathematical model on the basis of the first case allows
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the consistant separation between the plastic and the creep deformations and
constitutes the basis for the following numerical calculations, whereas in the

second case, a coupling of both deformation processes is generally assumed.

The most simple mathematical relationship to describe creeping is given by the
Bailey-Norton law:

€= Ag"t™

In this eqguation A,m,n are material constants and dependent of temperature, in
which case n states the degree of nonlinearity between stresses and strains.

The differentiation of this equation with respect to time supplies the strain
rate for variable stresses:

. _d€e
€ dt

As a result of the time-dependent reference, this relationship constitutes a

= Ag"mt™-!

time-hardening solution, i.e., the relevant creep strain rate is specified by
the stress, time and by temperaturé using the constants.

An additional formulation of creep strain rate is obtained if one eliminates
time from the preceding equation. If the creep law is solved for time, and by
placing the expression obtained into the above equation, a relationship is found
for the creep strain rate which is independent of time (strain hardening theo-
ry):

€.z AV/m mon/m(sc)(m-ﬂlm

The application of the differing hardening theorieé is shown in Figure 5 and 6,
by determining creep strain for various stress intervals and in'conjunction with
the associated creep curves. Figure 5 shdws the increase of creep strain on the
basis of the time hardening theory. Initially, we are moving on the original
creep curve for 55= const. If the stress is increased from 63 to 64 at any
point (point A on the 65 —-curve), we follow the course of the 6y -curve as of

this point. The resulting strain accumulation up to the new stress change is
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obtained by shifting the &, —curve parallel from A’ to A, Similarly, we can
proceed at points B and C to 61 or 6; respectivly for additional stress changes.

Whereas time is kept constant during the time hardening theory at the time of
transition from one creep curve to another, the creep remains constant with the
strain hardening theory, Fig. 6. '

The described hardening theories allow the calculation of the cfeep strain for
stress changes in the same direction; in contrast thereto it is not possible
without appropriate auxiliary rules to register the effect of a stress reversal,
The principal procedure in applying such auxiliary rules is explained by way of
example in the strain hardening model in Figure 7.

Initially, Fig. 7a shows the assumed stress history, Fig. 7b the associated
creep curves. For the sake of simplification, it is assumed that the creep
curves under compression are the mirror image of the curves for tension.
Creeping starts with &3 and the creep strain €, is accumulated. When shifting
to stress -6y, it is assumed that the hardening achieved previously under ten-
sion is extinguished and creep under compression starts anew, i.e., the creep
curve for wﬁy correspeonds to a nonprehardened material. When changing to a new
positive stress 61 (ty), the overall creep strain achieved £4- £y remains posi-
tive as long as the creep strain generated under compression is smaller than the
creep achieved previously under tension. Further creep behaviour is then de-
scribed as of value &f-élby the 6% =-curve, Fig. 7c. In contrast, we start at
creep value zero on the Gi-curve if §f>£1tecause the hardening previously‘built
up under 6§ was totally eliminated. In case that es was larger mathematically
than the creep strain &, accumulated at -6}, the hardening starts at a new com-
pression on the relevant creep curve from the very beginning.

3 NUMERICAL CALCULATIONS

The program system PERMAS /1/ was available for calculations. This program is
aﬁpropriate for the solution of plastic material problems as well as of creep
processes. It was already used successfully with previous elastoplastic calcu-
lations and is now to be used in combination with creep or relaxation proceéses.
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First it had to be clarified how well material-mechanical deformation processes
can be described with cyclic plastification and creeping by the finite element
(FE) code. For this reason, the load cycle of a typical, uniaxial fatigue test
as used to determine the incipient crack load cycle was recalculated. Figure 8
shows the type of test specimeh which could be idealized with 9-~noded axi-sym-
metric ring elements. With a test temperature of 530 °C and the strain con~
trolled load specification, the subsequent hold time meant a relaxation of the
tensile test bar. In particular, this was to clarify if relaxation processes
can be imitated satisfactorily by a creep calculation.

A heat resistance 1% Cr-steel (28 CrMoNiV 49) which softened in cycles formed
the basis. Cyclic uniaxial stress-strain curves were available for the material
named for different test temperatures between room temperature and 530 °C, while
the selection of.the creep curves was limited to 530 °C. 1In order to implement
into the FE code, the uniaxial stress-strain curves and the creep curves were
approximated by polynomes of a higher order; required intermediate values could
be determined by linear interpolation.

The hysteresis loops found by assuming isotropic and kinematic material harden-
ing are compared in Fiqure 9. The strain amplitude was specified with 3.5 0,00,
Since’ the program accurately follows the yield curve on a calculation basis, a
comparison with the measurement can be ignored. The courses obtained confirm
the behaviour discussed in the preceding chapter, namely that for isotropic
hardening, the elastic strain proportion increases while the kinematic hardening
medel maintains the elastic limit constant,

In order to check the relaxation behaviour, the same FE model was used to apply
a strain controlled load from a stress-free original'condition to a tensile load
of 360 N/mn®, and with a remaining constant specimen strain, a hold time of 20
minutes was assumed. Since, according to the theory used here, plastification
and creep may be viewed as independent processes, it does not make any diffe-
rence in which way (purely elastic or elastoplastic) the original condition is
used. In order to be able to simulate the relaxing of the test bar, the holding
time was subdivided into time increments of half a minute and it was assumed

that within time interval, creep sets in at the currently prevalent stress with-
in the component.
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The decrease of stress over time in the tensile test bar in accordance with the
strain hardening theory and the time hardening theory is shown in Figure 10.
Since the difference of both theories is procedural ~and not phenomenclogical,
both curves are simi;ér, but relaxation is greater in accordance with the time
hardening theory.

In comparison with the measured curve which was taken from the test protocol of
the start-up cycle of a fatigue test with hold time, stress decreases faster on
a calculation basis, however, the strain hardening gets closer to the test. The
difference between the calculation on the basis of the strain hardening theory
and the experiment arises actually within the first minute, while both curves
thereafter almost run parallel. It may be assumed that the mathematical formu-
lation of the creep curves do not represent primary creep accurately enough.

In contrast to the calculations for the small-scale specimehs, where a mechani-
cally induced load was effective, the large-scale specimen was subjected to al-
ternating temperatures which were based on the current temperature course of a

- turbine shaft. Figure 11 shows the type of test SQECimen and its main dimen-

sions.

In order .to obtain the temperature course shown in Fiqure 12, the specimen was
inductively heated from outside to 530 °C. Depending on the rate of heating, a
more or less steep gradient could be obtained. This gradient can be increased
by simultaneously cooling the inner wall. Once the maximum temperature is
reached, a steady state is established, while retaining the inner/outer tempera-
ture difference. After the inner cooling is switched off, temperature equaliza-
tion takes place at 530 °C. Subsequent external cooling produces an inverted
temperature gradient. Detailed explanation on the'performance of the test may
be taken from /2/.

The calculations for the large-scale models were carried out in two separate
stages. In the first calculation, the transient temperature field was calcu-
lated, using the temperature measured at the inner and outer surface of the

"specimen. The temperature calculated for each node was then multiplied by the

associated coefficient of thermal expansion and incorporated into the elasto-
plastic calculation as initial strain, It was assumed that the model was free
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of internal stress at the beginning of the calculation. Both calculations were
based on the same number of elements which were of the same type as in the fore—
going calculations (axisymmetric_ring elements). With the exception of the
modulus of elasticity for which a mean value was used in the computations all
the material properties were specified as a function of temperature and strain
respectively. Due to the cyclic températures the elastoplastic calculation
followed the kinematic hardening rule.

Figure 13 shows exemplary stress and strain courses in the notched bottom of the
large-scale specimen for a temperature cycle without holding time. Since the
calculation is based on cyclic yield curves at half the number of cycles requir-
ed for an incipient crack (N/Ny=0.5), the strains measured for N/Ny=0.5 were al-
so used for the comparison. The correlation can be considered to be adequate.

The cyclic thefmal loading causes in the notched bottom of the large-scale
specimen 1nc1p1ent -Cra

'ng With knowledge of the strain range the number of
cycles up to which 1nc1p nt cracking occurs can be estimated from the crack
initiation curves of isothermal laboratory experiments on round specimens sub-

_ Jjected to cyclic uniaxial load at 530 °c, Figure 14.

As the strain range from equivalent and longitudional strain mathematically dif-
fer only slightly (see Fig. 13)'theoretically both strain values yield about
1300 temperature cycles up to incipient cracking. The crack initiation curve
derived from a test series with large-scale specimens on basis of the ex—
perimentally reproducable longitudional strain shows, that incipient cracking
occurs sooner,

The submitted evaluation makes not evident which strain range governs the inci-
pient cracking behaviour. For this reason the stress range was selected to re-
present the crack initiation curve instead of the strain range. To confirm the
result on the basis of the strain range, the required stress range (see Fig.
13) has to be taken from the equivalent stress.

A hold time after each temperature cycle at 530 °C causes always a relaxation in
the same direction. The effect of a 120 minutes lasting hold time on the
stresses in the notched bottom of the large-scale specimen is shown in Fi-
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qure 16. The calculation is based on the strain hardening theory. The re-
duction in stress at the end of the hold time approximately amounts to 10 N/,
It is assumed that repeated relaxation will not influence incipient cracking.
In the meanwhile this assumption has been verified by a further experiment.

4 SUMMARY

In order to study the incipient crack behaviour at alternating temperatures on
assembly-part components, thick-walled hollow cylinders with circumferential
notches were selected as test specimens, which were scaled according to a tur-
bine shaft. Alternating temperatures with and without hold times generated in-
cipient cracks in the large-scale specimens. \

Elastoplastic finite element calculations concurrent with the test provided in-
formation on the deformation behaviour of large-scale specimens. By applying
the kinematic hardening rule, a fine agreement between measured and calculated
strains was obtained. - '

The assessment of the incipient crack behaviour for tests without hold times
with an incipient crack characteristic registered on laboratory tests resulted
in an overestimation of the number of the temperature changes up to the onset of
cracking.

Hold times under constant strain which result in relaxation of the stress in
uniaxial laboratory tests could be satisfactorily imitated with the strain
hardening theory.

A constant temperature of 530 °C over 120 minutes after a preceding temperature
cycle generates only minor stress changes in the large-scale specimen.
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