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Abstract. It is assumed that the plane in which the maximum
variance of the equivalent stress appears 1is critical for a
material and the fatigue fracture should 'be expected in this
plane. The equivalent stress is calculated according -to the
fatigue criterion of maximum shear and normal stresses in the
fracture plane. It was demonstrated that for each stationary
random stress state there is one or more critical planes where the

fatigue fracture plane can be expected.

1. "INTRODUCTION

Positions of fatigue fracture planes (macro) under multiaxial
sinusoidal loadings are dependent—among others-on: '

- a state of material (elastic-brittle or elastic-plastic mate-
rials) [1,5,11],

- ratio of amplitudés of stress state components (5,11],

~ a value of amplitudes (low-cycle fatigue shigh—-cycele fati-
gue} [13},

- phase displacements {2,18,11,15].

For elastic—brittle materials the fatigue fracture plane is often
perpendicular to the direction of the normal stress with the
maximum amplitude. For materials in elastic-plastic state the
fracture plane is often one of'two_ planes where shear stresses
have the maximum amplitude. There are also intermediate positions
of fatigue fracture planes.

Under multiaxial random loadings predominant damage mechanisms and
factors influencing the fatigue fracture plane position can be ex-
pressed with averaging, 1.e. evaluaticn of some statistical
parameters. For these conditions three methods of determination of
the expected fatigue fracture plane position can be proposed [9]:

-~ method of weight functions {1},




- method of variance [2,3,4],

-~ method of damage cumulation [9].

These methods: A

- concern random states of stress components of which are
stationary and ergodic Gaussian stochastic processes,

— take random changes of directions of principal stress axes into
account,

- use relation al(t)aaz(t)aos(t) ‘at. any time t for defining
random values and directions of principal stresses,

- allow to determine the expected fatigue fracture plane position
with the unit vector normal +to the discussed plane 1 with
components dependent on the mean direction cosines in’ &n’ ﬁn’ (n=
= 1,2,3) of axes of principal stresses.

Till now the method of variance has been connected with the
criteria of:

- maximum normal stress in the fracture plane [4],

- maximum strain in direction perpendicular to the fracture plane
{31,

- maximum shear stress in the fracture -plane [2].

In this paper application of the variance method is presented in

- connection with a more general c¢riterion of maximum shear and

"normal stresses in the fracture plane {7].

2. FATIGUE CRITERION OF MAXIMUM SHEAR AND NORMAL STRESSES IN A
FRACTURE PLANE

It is assumed that:

1. Fatigue fracture is caused by the normal siresses cn(t) and
shear stresses tns(t) acting in the s direction on a fracture
plane with a normal 7.

2. The direction s on the fracture plane coincides with the mean
direction of the maximum shear siress Tnmax(t)' .

3, In a limit state conforming to fatigue strength the maximum
value of combination of stresses tns(t) and- on(t) under

multiaxial random loadings satisfies the following equation:

max {t t) + Ko (t = F 1

ax (T (6) () (1)
where ¥X,F - material constants determined during cyclic fatigue
tests.

If we assume that the expected fracture plane is determined by the




mean position of one of two planes of +the maximum shear stress
rn(t) and the direction s coincident with the mean position of

stress rl(t) we obtain the following form of equivalent stress!:
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The mean direction cosines should satisfy the following conditions

of orthogonality:

- 2 -~ 2 -~ 2

ln +mn +1’1n =l’ (n=112}3)

1112 + m m, + n1n2 = @, 1113 + mlm3 + n1n3 = @

1213 + momg 4 NN, = 1) (3)

In case of multiaxial cyclic loadings Findley et al {6], Stulen
and Cummings [14] assumed that the normal of the <c¢ritical shear
plane (fracture plane) n formed an angle @ with the direction of
the normal stress having the maximum amplitude and a coefficient K

can be calculated from

Tarf 2 1
v = 1 or tg 20 = 7
1 4 ——===m5
1+K
where‘aaf — fatigue limit under tension~compression,raf - fatigue

limit under torsion. Thus
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Caf 2 1
K = 57T - -1 or K = —’t‘g—i-é (&)
a af

From formula (2) it appears that the equivalent stress ored(t) is
linearly dependent on the stress state components cij(t) so it can

be expressed as

6
ored(t) = kgl 8y Xy {t) (5)
where
x, (8) = o (1), x,(t) = 0 (1)
x, () = o (1), X (1) = o, (t)
X (t) = o, (), xg (1) = 0 (1)

and ay is constant coefficient.

~

The expected value of the equivalent stress 0 .oq €81 be calculated

from -the following formula

R 6
Oed = k;} ay Xy . : . (6)

where x, — the expected value of stress state components xk(t).

k

In this paper we assume that stress state components have their ex

i

pected values equal to zero,then,according to (6),the expected va-
lue of the equivalent stress is equal to zero as well, i.e. Gredze'

The variance of +the egquivalent stress [ is an important

ored
parameter determining fatigue life. It can be calculated from

6 6
uored = s¥1 t;ﬁ g G luxst (7}

where a s a; are the same coefficients as ay in (6), they are sui-
tably chosen for elements - of the covariance matrix of random
variables Xy After transformations the equivalent stress variance
is equal to

o _ s 2,2 g~ g -
i = {[11 13 + K(ll +13) ] ”x11+ [ml Mg + K (ml +

2 > 2 ~ - 2.2 s> 0 s -
m3) 1 “x22+ {nl —n3 + K (n1+n3) 1 px33+ 4 [llml—-13m3+ K (11+

13)(m1+m3)} px44+ 4 [11n1—13n3+ X (11+13)(n1+n3)] px55+ 4 [mlnl—

A -~

—m3n
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~ - 2 T2 2 < : 2 ~ 2 0 2 ~ " 2
K(m1+m3) ]ﬂx12+ 2 [11 —13 Y+ K(11+13) ][n1 ~Ng + K(n1+n3) 1 Py +
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(8)

3. METHOD OF VARIANCE

The method of variance is based on the assumption that +the plane
in which variance of the equivalent stress reaches its maximum 1is
critical for a material and fatigue fracture should be expected in
this plane,

For stationary stochastic loadings,i.e. for determined wvalues of
elements of the covarianc? ma?rixﬁpxst,the variance Hored depends

on 6 directional cosines ln’ m_, nn,(n=1,2,3) which must fulfill

n
orthogonality conditions (3). In such a case searching the maximum

variance (8) is quite difficult. The conditional maximum of a
non—-linear function of several variables with non-1linear
limitations (3) should be found. Unfortunately,the problem cannot
be simply analitically solved in a general case. In order to

P

eliminate these difficulties directional cosines ln,mn,nIl are

replaced by trigonometric functions of three Euler angles 3,&1& in
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the following way

i1= cos & cos % - COs 3 sin & sin %,

$1= sin & cos & + COS 5 cos & sin &,

£1= sin 5 sin &

i2= ~-C0s @ sin % —cos 9 sin & cos &, . (9)
$2= -sin @ sin % +cos 5 cos & cos %,

52= sin 3 cos &.

23= sin 5 sin @ , $3= ~g5in 3 cos @, n,= cos P

where 05§ <x,  0sp<2x,  0sd<2x:

Thus,a number of six dependent parameters was reduced to three

independent ones determining the variance of equivalent stress

~

L = £ (¥, v, ¢, K, HxSt) (1e)

ored
The orthogonality conditions (3) were also eliminated.

Searching the maximum of nonlinear function (10) in an analytical
way is still, in many cases, not effective.

The digital simulation method was used in order to investigate co-
urses of variability of function (1@) depending on the mean values
of Epler angles 5, &, %, (uxst and K are constants).

The maximum variance (10) was alsc numerically calculated with a
suitable method of nonlinear optimization function of many
variables (complex method).The schematic algorithm of the variance
method for determination of the expected fatigue fracture plane

position is presented in Fig. 1.

oxx(t)
—— | Computiation of elements Determination of wvariance
. o] of the covariance |= . >
* t r t '—'f '8 K
e matrix unction H Jred ( 19 9 ’Hxst)
—_—
o (t)
Y=
: Expected
Computation of maximum Tranformation of wvalues fatigue
= and corespondingl=|, ° % o~ 3 fracture
uGred neee P g d,9,¢ to 1 ym ,n i
values 9,1, ¢ n n n piane
Lt position
~ ~ ~
(!} ,m_,n_)
nn n

Fig.1 Algorithm of the variance method for determination of the

expected fatigue fracture plane position
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4, THE EXPECTED LOCATIONS OF FATIGUE FRACTURE PLANES

On the basis of the presented method the expected fatigue fracture
plane position is determined for four simulated random states of
stress. The uncorrelated components of the random stress state are
generated as sequences of random numbers with normal probability
distribufion N(D, px) and wide-band frequency spectrum ([8].
Calculations are made for two different materials:

-mild steel (0.1%0),oaf=2®3 MPa,raf=18® MPa, K=0.8197

-Swedish hard steel (@.51%0),0af=313.9 MPa,raf=196.2 MPa, K=3,8717.

4.1 Uniaxial tension~compression .
With the condition that axx(t) # ® and wvanishingg the remaining

stresses oij(t)=® for i,j=x,v,z,it can be shown that

1
~ 2 I 2 -~ ~ 2 2
7] = e f1,7-.1 + K (1,+ 1.)° 17 u (11)
ored (1 +K) 2 1 3 1 3 xil
The generated course oxx(t) with variance px11=3888 MPa2 gives the
. . 2 . _
maximum ofzvarlance pared—524l MPa for mild steel and Hored™
=10148 MPa“ for hard steel when the cosines have the following
values: ; '
I. Mild steel
1 my =1 g Ma g
2! 2!
+0.,9417 mlI i%®.1132—m11 +0.3366 m3I iv0,8867-m31
2 . 2
but m £0.1132 m <0.8867
A 11 n A a3l N
then 1 m n 1 m n
n n ) n s s s
i 2" 2
i@.?@BQ mnI iVb.lBS@-mnI +Q.,4279 m_ £V®.8169—msI
m_.2<0.1830 m_ . %<0.8169
ni ) _ sI )
II.Hardened steel
1 My ny 14 My RE!

N 2' 2
i®.79®§‘ mlII £ @.375@—mlII +0.6123 mSII £Vb.6251—m311
but m. ..%<0.375 m... %<p.6251, so

111 ' 311 ) !
1n mn nn ls m n_
Z' 2'
+0.9920 mnII iV@.@iSQ—mnII +0.1261 msII £Vb.9841—m511
but m_ .. °<0.0159 m_ .. 2<0.9841

nil sII
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v

Fig. 2I The expected fatigue fracture plane positions and a

graph of variance function (according to(il))for mild steel

Fig. 211 The expected fatigue fracture plane positions and a

graph of variance function (according to(ll))for hard steel
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The expected fatigue fracture plane positions are presented in

Figs. 2Ia and 2IIa. Figs.2Ib and 2IIb show a graph of function

u
ored
selected taking into account orthogonality conditions and so as to

in the system of axes ll,ml (the remaining cosines are

reach the maximum value of pored)'

The infinite number of planes inclined +to the axis x at the
following angles

I o= 64° 41’ for mild steel

11, anII = 82° 45’ for hard steel

have been obtained.

There is a distinct influence of a kind of material (constant K)
on location of the expected fracture plane. For ﬁard steel the
direction 1 forms a smaller anglé .with the direction of stress

axx(t) than for mild steel

4,2 Biaxial tension-compression with shear
The conditions for biaxial tension~compression with shear are:
axx(t) # 0, ayy(t) # 0, cxy(t) # @ and aij(t) = @ for i,j = X,
v,z. This leads to
1 )
__________ T2 > 2 5 T 2.2 c2_ ~2
Hored = T 11, 2 C U105 157+ K (g 10717 gy + Imy - mg

A~ 202 1+ 1) (m+ m)12 .
+K (ml+ ma) ] By + 4 [1,m,—~ 1 mg + K (11+ 13) (ml+ m3)] Mg +

Ay a2 T Ay A2 ~ A2
b2 (1,0 1%+ K (y+ 107 (7 omgt 4 Ko (mg+ mg)") pyg, ¥
s2 202 vk A+ 1% (iym-1,m, +K (1.+ 1.) (m, + mq)]

1 3 b 1™~ 33 1T Y3 1t Mg

+ 4 [& 2_ a 2 + K (ﬁ + 5 )2] [i & - i & + K (i + i )
Pyt 1 3 1t s 1M~ taMs 1t ts
(m1+ m3)} ux24} (12)

The calculated covarriance matrix for the generated components of

stress state is equal to

et Hxi2r Mx1a 3872 7 =2
zx - Bea1' Hxa2' Hxa2s - 7 3899 -9
Heny® Myaor Hxas =2 =9 3840
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Fig..3I The expected fatigue fracture plane positions and -a

graph of variance function (according to 12) for mild steel

al

iz

Fig. 311 The expected fatigue fracture plane positions and a

graph of variance function (according to 12) for hard steel
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From optimization procedure maximum of the function (12) Hored
=9347 MPa2 for mild steel and pared=15298 MPa2 for hard steel whe-

re obtained; values of the direction cosines were the following

I.Mild steel

A A

11 mi n, 13 m3 Ny
+0.4269 +0.90043 0.9 +0.9043 F0.4268 G.0
+0, 4269 F0.9043 +0.9943 09,4268 0.0
then ln mn nn 1S m n

+0.9413 +G.3376 0.9 F¥0.3376 +0.9413
+0.9413 F0.3376 2.0 T0.3376 F0.,9413
I1. Hardened steel

1l My n1 13 ‘ no n3
+3.9919 +0.1276 0.0 FO,1270 +3.9919 ) @.9
+@.9919 70,1270 F0.1270 70.9919 0.0
then 1 _ m n ' 1 m n

T} n 1 8 8 ]
+0.6116 +0,7912 0.0 +0,7912 70.6116
.G

x0.6116 F@.7912 ] +8.7912 +@.6116

The expécted fatigue fracture plane positions are presented in
Figs. 3Ia and 311Ia. In Figs.3Ib and 31Ib graphs of the function
”cred according to (12) are presented.

In the considered case we obtain two expected fatigue fracture
planes for each material. They are parallel +to the axis z and

their positions vary depending on a material (influence of K).

4,3 Triaxial tension-—-compression
Suppose that all shear stresses vanish and only normal stresses

are non-zéro. This renders

H

sroa= T E (U BT e A IR g e omg® e
(m,+ $3;2 T T B S CILI WL LI (1,2 1,7 +
Ko+ 1% %= mg? o+ K (mp+ n)% py,, + 2 (17— 17 +K
(1,+ 1,0% - n o+ K (n+ npt 1 o, + 2 (m, %= m,? + K
($1+ &3)2 ] {512~ 532 + X (ﬂl+ 53)2} TN (13)
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o

"Fig. 4.1 The expected fatigue-fracture plane® positions and a

graph of variance function {(according to (13)) for mild steel

>\\/

i
Pt
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y/

a)

Fig.4.1I. The expected fatigue fracture plane positions and a

graph of variance function (according to (13)) for hard steel
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The covariance matrix for this state of stress was

Hy11 Fxi2 Hx13 3964 ? =40
Hy = Hya1  Hx22 Heas | = 9 3877 90
Hyay Hyag Hy33 —40 o0 3900

The obtained maximum of the function (13) was pored=5631 MPa2 for
mild steel and 10352 MPa’ for hard steel in the following points:

I.Mild steel

A~

1y My ny 13 My 3
0.9409 0.0 T0.3387 0.3387 9.0 +0.9409
~0.9409 0.0 +0.3387 —9.3387 0.0 F0.9409
then in %n ﬁn I, m n,
0.9048 0.0 +0.4258 8.4258 2.0 F70.9048
-0.9048 - 0.0 T0.4258 -0.4258 ®.0 +0.9048
II. Hardened steel
11 m, n, 13 My ng
0.7902 2.0 +0.6129 2.6129 0.0 F0.7902
-0.7902 0.0 +0.6129 ~0.6129 0.0 F0.7902
In : mn nn 1S m_ n_
8.9921 6.0 $0.1253 0.1253 0.0 £0.9921
-0.9921 2.0 T0.1253 ~-0.1253 0.0 -  +0.9921

The expected fatigue fracture plane positions determined by the

method of variance are presented in Figs.4Ia and 4IXa. Figures 41b
and 4IIb show graphs of the function Hored according to (13).

Here two critical planes were obtained,as well. They are parallel
to the axis y. However,there are many other sets of cosines ii’éi’
nifor which this function has a value slightly lower than the-
total maximum. Like in the previous cases,a distinct influence of
a kind of material on the expected fatigue fracture plane position

can be observed.

4,4 Triaxial tension-compression with triaxial shear

If all of six stress components are non-zerc, then Hyred is given

by equation (8).
The generated courses of stress state components give the

following covariance matrix
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3913 22 47 -43 25 -16
22 3930 55 -51 ~31 46
'gx = 47 55 3960 -10 65 ~217 P
~43 -51 ~10 3917 7 36
25 -31 65 7 3899 -8
-16 46 -27 36 -8 3958

From the optimization calculations for the function (8) the
maximum value u&red=1@243 MPa2 was obtained for mild steel and for

hard steel pared=l7541 MPa2 was obtained in the following points

I. Mild steel

1y my oy 14 Mg By
@, 3761 F0.,8488 +0,3712 +2.5620 +0.5271 +0.6373
+@.6342 ¥0.3281 +0,7001 F6.1885 T0.9428 0, 2862
then i é ﬁ i é ﬁ

7 n n s s s

+(.6633 F0.2275 +0.7131 F3.1315 F0.9729 F0.1882

+0,3208 T0.,8987 t0, 2969 +@.5761 +@ . 4347 +0,6932
1I. Hardened steel

1y My Ty 15 M3 Ng
+0.2481 3@.9539 +0,1689 +0.6188 +0.2918 +0,7296
+0. 7289 +0,0431 +0.6833 2.0 F0.9981 +0.0616

ln mn nn 15 mS nS
+0.6130 F0.4687 +0.6353 F0.2621 F0.8803 F0.3965
+6,5154 ¥0.6753 +0.,5267 +3.5154 +0.7362 +0.4396

The expected fatigue fracture plane positions determined in such a
way are presented in Figs.5Ia and 5IIa. In Figs.53Ib and 5IIb there

are graphs of the function U according to (8).

ored
Two expected fatigue fracture plane positions were obtained for

each considered material. They are probable +to the same degree

but,like in 4.3, from the graph of u it appears that there are

: ored
many other planes which are probable to a similar degree.
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Fig.5I  The expected fatigue fracture plane position and graph of

variance function (according to (8)) for mild steel

Fig.5I1 The expected fatigue fracture plane position and graph of

variance function (according to (8)) for hard steeel
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Generally speaking,for each considered case we can obhserve a
distinct influence of coefficient K (a type of material) on the
expected fatigue fracture plane position determined by the discus-
sed method.

Equivalent maxima of the function [ appear in several

gred
directions,so each of these directions is probable in the same
degree. Evaluation of fatigue life on the assumption that one of
the distinguished planes is the expected fatigue fracture plane

gives the same results.

5. VERIFICATION OF THE DISCUSSED METHOD BASING ON THE RESULTS OF
CYCLIC FATIGUE TESTS

The analysis has been carried out on the basis of the results of
tests discussed in {1,11,12]. Rotvel [12] tested cylindrical spe-
cimens under cyclic biaxial tension-compression with a phase
shift, Nishihara & Kawamoto [11] examined round specimens made of
four materials under torsion with bending at various ratios of
amplitudes and phase shifts.l Achtelik et al.[1} tested round
specimens under synchronous bending and torsion. In the mentioned
papers the fatigue fracture plane positions obtained for given
loadings are presented. Owing to these data it was possible to
compare the estimated fatigue fracture plane Qositions obtained
with the method of variance and the experimental data. Absolute
value of difference between their direction cosines,not higher
than 0.1,was assumed as criterion of conformity. If two directions
of fatigue fracture planes were obtained from theoretical
considerations,the direction more similar to that obtained from
experiments was assumed.

In the analysed cases of loading the following conformities with

‘experimental data were cbtained:

- for steel 0.35 % C [15] 190 %
~ for hard steel (6.51 %) [3] 100 %
- for mild steel (©.1 %) [3] . 100 %
~ for duralumin (3.81 % Cu) [3] 50 %
- for cast iron (3.87 % C) [3] 33 %
- for cast iron ZL250 (3.32 % C) {3] 60 %

From these data it results that for carbon steel a very good
conformity is obtained, irrespective of carbon content and a Kkind

of heat treatment. A low conformity is obtained for duralumin and
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cast iron. A better conformifty is obtained for these two materials
if the mean direction of these two directions presented in tables
is assumed as a theoretical direction éf fatigue fracture plane.A
full evaluation of correctness of the proposed method will be pos—
sible as a result of much more experiments ,especially for

multiaxial random loadings.

6. CONCLUSIONS

1. The w~ariance method for determining the expected fatigue
fracture plane position under multiaxial fatigue concerns states
of stress,components of which are stationary and ergodic random
processes. ‘

2. In the variance method it is assumed that a plane in which wva-
riance of the equivalent stress reaches its maximum is criticatl
for the material and fatigue fracture can be e#pected in this
plane.

3. Application of the variance method for the criterion of maximum
shear and normal stresses in case of four simulated multiaxial
random states of stress gives +two or more expected fatigue
fracture planes and they are probaﬁle to the same ﬂegree.

4, From experimental data for multiaxial cyclic fatigue it appears
that the variance method with the discussed stress criterion
gives good results for three analysed types of carbon steels.

5. A full evaluation of the presented method will be possible
after some new experiments for both cyclic and random multiaxial

loadings.
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