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Abstract

In this paper the main causes of differences between the
fatigue strength coefficient Kf and the theoretical stress con-
centration coefficient Kt are discussed, and the effects of three
dimensional state of stress and the stress gradient at a hole on
Kf are also investigated using a micromechanics model, A formula
to predict Kf is obtained based on the model of fatigue nucle-
ation postulated by Wood. This formula indicates that under high
cycle fatigue conditions the stress gradient has almost no effect
on. K., but the three dimensional stress and the smooth specimen
-gize determine the difference between Kf and Kt' From this for-
mula, it can be deduced that_Kf will increase as the cycles to
failure increase for cyclic hardening materials, on the contrary,
Kf will decrease as the cycles to failure increase for cyclic
softening materials, This deducation has been checked by experi-
ments on cyclic hardening materials LylZ-cs and Lyi2B-az Al
alloys. An example of predicting Kf for a plane with a hole is

also given in this paper.

Introduction

The mechanism of fatigue nucleation has been investigated
widely and the results of investigation indicatexthat fatigue
nucleation is caused by the plastie deformation accumulated with
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the increase of fatigue cycles/1’2/. There are many models/1"4/
to describe this mechanism and among the models, the extrusion
and intrusion model postulated by Wood 5/ is popularly accepted

1OW.

There are two sourses of local plasticity. One is the ex-
ternal, for example, the stress concentration caused by notches,
etc.. The other is the internal, that is, the scatter of the

material structures.

In gerenal, the fatigue strength coefficient Kf is substi-
tuted for theoretical stress concentration coefficient Kt in the
local strain method of predicting the fatigue life, to take the
three dimensionai stress and stress gradient at a notch into con-
sideration. K, can be defined as follows,

f
the fatigue strength of smooth
K _specimens at one fatigue life (1)

f—‘che fatigue strength of notched

specimens at the same fatigue life
Obviously Kf is a function of fatigue 1life. There are many for-
mulae to estimate Kf, and. among which the Neuber's and Perterson's
are well-known and widely employed today/5/, but all these esti-
mations didn't consider the effect of the fatigue life on K.

" In this paper the main causes of differences between'Kf and
Kt are discussed. According to the above defination, a formula
to estimate Kf is presented and from this formula some important
results are deduced and checked. An example of predicting Kf is
also given to show that the estimation is not complicated and the
methodology has a adaptability.

Computational Micromechanics Model

The computational micromechanics model which was given by one
“of the authors/6 \is one of the micromechanics models, in order
to provide a new approach to quantitative analysis of the mechani-
cal behaviour of engineering materials in consideration of micro-
structures. This model deems that materials have a microstructure,
all of the field quantities are random variables or statistic
functions, and all features which break the homogenity and conti-
nuity of the material structure are called "defects" which play
an important role in the behaviour of materials,
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Based on the above basic hypotheses, reference /6/ defines
and discusses the computational micromechanics model, reviews
and studies the fundamental theories adapted to this model,
presents the transition function method to obtain the relations
between macroscopic and microscopic quantities, and gives the
gerenal steps of{solving problems. Here only briefly reviews the
steps to analyze a mechanical behaviour of metal: (1)the prepa-
ration of the microstructure datum. If these datum are not avai-
lable, some experiments on the microscopic properties of the
material should be done. These datum usually include the compo-
sitions of the material, the percentage and the distribution of
each composition, the main defects of the material, etc., (2)
according to the problem to be solved, an interested local domain
which is rather smaller than the specimen but much larger than
microscopic scale is separated from the specimen in order to re-
duce the numbers of elements in numerical analysis., The loads
acted on the local domain can be easily computated using macro-
mechanics (Fig.1), (3)then based on the experimental datum, the
local domain is separated using Monte Carlo Method, (4)the micro-
scopic parameters, ‘such as voids, dislocations, etc., are intro-
duced into the numerical or theoretical analysis. What micro-
scopic parameters are introduced depends on the micromechanism of
the mechanical behaviour concerned, which usually have been '
investigated, (5)summerize the theoretical and numerical results.

e

{a) specimen (b) local domain

Fig.1 The local doumain
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Estimation of Kf

1. Crack nucleation model

Under high cycle fatigue, the fatigue crack nucleation can be
described by the extrusion and intrusion model postulated by Wood,
and the dislocation dipole model has successfully explained the
ratcheting phenomena of fatigue/7/, Fig.2,
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Fig.?2 The model of fatigue crack nucleation

A smooth specimen is under a cyclic uniaxial loading. During
the first loading, a slip takes place along a line(layer I) in-
clined by 450 against the axis of the loading. Dislocations are
piled up on layer I. For the unloading, a reversal slip takes
place on a line{layer II) located close to the layer I. Dislo-
cations with the opposite sign are piled up on the layer II, and
in each of the following loadings, more positive dislocations are
piled up on layer I, and in each of the following unloadings, more
negative dislocations are piled up on layer I1I, and both the dis-
locations are piled up against a grain boundary. Since the plas-
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tic deformation is irreversible, the dislocation density on layer
I is not changed during the unloading and that on layer II is not
influenced by the loading. The dislocation density D(x) can be
solved using the method given by.Leibried 8 for the model as
shown in Fig.2(b). The self elastic strain energy of the accumu-
lated dislocations U can also be obtained,

AT-2 .
D(x) = + ( %ﬂ k) (dzfx2)z i (2)

. 2 ’ .
U = (Até2k) a%i (3)

where positive sign in equataon (2) is taken for layer I, and the
negative sign for layer 11, k is the frication stress, d is the
grain size, A=G/2W(1-Y) for edge dislocations, A=G/2% for screw
dislocations, G is the shear modulus and Y is Poisson's ratio.
The dislocations monofonically increase as the cycles increase.
Physically, it is impossible to have an infinite number of dislo-
cations in the material, So a criterion for the fatigue crack
initiation could be a critical value of U,

U=Wd : (4)
where Wc is the specific fracture energy for & unit area and is a
material constant. From equations {3) and (4}, it can be obtained
BAW = (AT-2k)°na © (5)

where n is the cycles to nucleate.

2, Crack initiation at a notch root

Based on the computational micromechanics model as stated
above, it is not difficult to find the most dangerous element at
a notch root. Usually this element is in three dimensional state
of stress as shown in fig.3(a). From this the maximum shear
stress and the normal stress can be obtained easily,

q, =0,(x) ' - | (6)
T =T(x

Gh(x) and T(x) vary with the geometry, external load, microstruc-
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ture of the material, etc.. For a small x, equation (6) can be

approximated as
G;l ::0-0--%. X

(7)

where ¢, and Cy are the gradients of normal stress and shear
stress at the root of a notch respectively, 0o and té are the
normal stress and shear stress at the edge of the notch.

N

y; %
. =
|
(a) ()

Fig.3 Three dimensional stress state
of an element at the notch root

The dislocation density Dn(x) and the self elastic sirain en-
ergy U, can be obtained as the above section,

D (%) = & (AT, -C¢ x-2k) i, G ai ' (8)
n — —

TA (aBx2)h "~ 2mA 42524
U, =—%I(AT,0-—21£) al- 47'“ (AT, —2k)Cp 4o+ —or 64A c2qt - (9)

When U =W _d, the crack initiated, and then equation (9) can be
written as

_ 2 °n 2. n 2.3
sptwc = n(A'Co—2k) a -.—,,z--(zrco-ek)ccd + 5 gt,d (10)

To compare eq. (5) with eq, (10), there is influence of two behind
terms in equation (10) on the crack initiation when the stress
gradient is considered.

3, Estimation of Kf
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From equation (5), the relationship between the load AT and
the fatigue life n of the crack initiation can be written as

SRV,

When the material microstructure enters in consideration, the
external gross stress ﬁﬂé is different from the internal stress
AT acted on the most serious element. Suppose

'N;=Kq.m:g (12)

where K is called as microstiress concentration coefficient of a
smooth specimen, and K¢ is equal to 1 for homogeneous materials.
When equation (12) is used, (11) is written as

Ko AT, = 2k + '%ﬂ (13)

Similarly, for a notched specimen, we can solve eq.(10)

T, e oo+ &L, [BA% (14)

and let K be the microstress concentration coefficient of a
notched specimen, then

AT, = Kp. AT (15)

Obviously, K? is equal to K, under conditions of linear elastic
stress and homogeneous materials. When eq.{(15) is used, eq.{(14)
is written as

[BAV,
KRAT) = 2k + S+ [ (16)

-According to the definition of K. eq.(1), the following for-
mula can be obtained from equations (13) and (16),

Kf =A'Cg/m;g
n
r%;u- Cd ) (17)
| oM + Cpd + 7B

The formula (17) gives an estimation of the fatigue stress coef-
ficient Kf. From this formula it can be seen that Kf is related
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to fatigue life n, the size of specimens(K?,Kg), the geometry of
the notch(Xy,Cr), the material(d,wc,A,etc.), and so on. From this
formula, the following two results can be deduced.

(a) In gerenal, Cyd << 2wk, so the above equation (17) can be
written as follows

Kp = KL / Ko _ (18)

that is to say, under high cycle fatigue conditions, stress gra-
dient has almost no effect on K., but the three dimensional state
of stress at a notch and the smooth specimen size determine the,
difference between Kf and Kt’

(b) In high cycle fatigue, the root of the notch is in elasti-
city during cyclic loading, so Kg is a constant and then Kf is
expected to be a constant. But if the root of a notch is under
elasto-plasticity, Kﬁ will increase as the cycles to failure in-
crease for c¢yclic hardening materials and K? will decrease as the
cycles to failure increase for cyclic softening materials. So it
can be deduced that Kf will increase as the cycles to fallure
increase for cyclic hardening materials, and on the contrary, Kf
will decrease as the cycles to failure increase for cyclic
softening materials. Fig.4 presents the experimental results of
Kf for hardening material Ly12-cs and Ly12B-cz teo check this dedu~
cation. :

4, Bstimation of Kf distribution

From the hypotheses 6f the oomputétional micromechanics model ‘
stated in the above paragraph, it is known that K, and Kg are
random variables, 80 Kf is a random function.

Let the probabilistic density function of Kq be f(x), the pro-
pabilishic density function of Kp be £, (y), then the probabilisitic
density function of Kf is

£, (z) = ?%T [f(x)fh(y) dx dy 3 (19)
D

where D is integral domain enclosed by 2-¢z and intervals of the
random variable x value and the random variable y value.
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Fig.4 The experimental results of Ko
of Lyi2-cs and Ly12B-cz Al alloys

A Numerical Example

As a numerical example, the Kf of a plane with a central hole
(Fig.5, Kt=3.25) is estimated. Here only gives the estimated

results,

First the microstress distribution in the smooth specimen is
obtained througth the numerical analysis according to the compu-
tational micromechanics model. Table I presents the 45 maximum
microstress values for 45 random distribution of the microstruc-
ture of the carbon steel (0%é65kg/mm2) under the gross stress
Sg;10kg/mm2. For the datum of table I, T can be approximated
to the shift Log-Normal distribution,

max

(In(T . _-T.)-T_)°
1 max “o i
exp{- YT ..2C
fﬂmax){@qmmax*m o TS
0 Imax<I£

where T, =0.68250, T =1.66128, 0%0.012001.

Similary, the microstress distribution can also be computated
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Fig.5 A specimen with a central hole

for the local domain as shown in Fig.5 under the gross siress

S§=1Okg/mm2. The numerical results are listed in table IL. T .
can be approximated to _
A ‘. .
£ (T ) ={ b= laaxt (21)
n 0 others

where a=9.58209, b=22,98031.
Then using eq.(19), we can obtdin the density function of K,

b/z %
I +55 h(t) at 0<z&af
a/z
b/z %
f.(z)=¢ [z h(t) &t a/T,< 2&D/T, (22)
1o
o others
»
where h(t)=-z- (- In(t-To)- T 7y
e N B G(veT ) T 207

The curve of fk(z} is presented in PFig.6. For 6q.(22) it is
calculated that the mean value of Kf is 2,748, and this value is
fairly coincided with the prediction of Perterson's, Kf¢2,7.




Table I Datum of the microstress in a smooth specimen

No. 0_3 0, gy -Cmax
1 -1.61336 0.59456 8.73987 5.17662
2 -1.60788 0,48199 8.76099 5, 18444
3 -1.47955 0.66840 9,00151 5.24053%
4 -2.,00066 0.3%2291 8,61931 5,30999
5 -0.48355 1.15925  10.28063 5. 38209
6 0.52533% 1.59127  11.29239 5.38353
7 -1.23093 0.33595 9,60970 5.42031
8 -2,0943%3 0.62894 8.89480 5,49459
9 0.34311 1.45777  11.39429 5.52559
10 -2.05669 0.3%1895 9.01135 5.53402
11 -2.42485 - 0.03707 B8.64542 5.53513
12 -2.94036 0.15362 8. 23606 5,58821
13 0.41707 1.82492 11.62684 5.60488
14 -2.5133%6  ~0.06750 8.75228 5.63282
15 -0,98730 0.56040  10.31837 5.,65283
16 0.73904 1.52939  11.83952 5.72471
17 -0,69126 1.19181  10.80080 5.7460%
18 -0.89540 0.80998 10.67526 5.785%%
19 -0.88049 . 1.11418 10,70233 5.79141
20 -4.30346 -0,78936 7.28866 5.79606
21 ~-0.77206 0.98654  10.84720 5.,80963
22 ~0.92089 0.81311 -10.,73482 5,82785
23 -2.,90005% 0.00996 8.87684 5, 88845
24 -0.87172 0.87893  10.91073 5.8912%
25 -2.50218 0.16887 9.32148 5.91183%
26 -1.97325 0.60859 9,86623% 5.91974
27 -0.74223 0,73164  11.13479 5.93851
28 -2.88111 -0.21423 9,05587 5.96849
29 -3.15351 =0,09561 8.7843%2 5.,96891
30 -0,78423 0.83%183 11, 16008 5.97215
31 -2.888%6 -0,08844 9.13781 6.01309
32 -0.98597 1.49865%  11.14172 6.06384
33 -1.3%4998 1,09%3%6  10.77777 6.06388
34 -0,60209 0.89191  11.67587 6. 13898
35 -2.,22719 0.66866 10.39232 6.30976
36 0.49114 1.20563  13,28293 6.39589
37 0.65367 1.19012  14.,60220 6,47427
38 0.20490 1.16288  13.21196 6.50353
39 0.25872 1,27493 13.83243 6.78685
40 -2298073 0.46153  10.61173 6.79623
41 -3.26709 0.26928 10.40424 6.83567
42 ~2.68410 0.49842  11.26611 6.97510
43 0.34042 0.48477 14.52277 7.09117
44 0.75461 1,04370  15.57885 7.41212
45 0.86779 1.01178  16.16002 7.64611
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Table IT Datum of microstress at the root of the hole
9.17506 10,45957 10.60805 12, 15397 12.42497% 12.72018
12.82807 12.84184 13.47050 13.49480 14.67484 14.,73700
15. 24181 15.6%136 16.22176 16.69189 16.9233%0 17.46455
- 17.61833 18.66148 19,42490 19.70080 19,82032 20,26209
21.02320 21.55563 21.89124 21.92070 22.52271
. i i 1 E i
£, (z)
004 i
0.2
0,0
0 %

Fig.6 The probabilistic density of K,

Conclusion

The computational micromechanics model is briefly reviewed.
The main causes of the difference between Kf and Kt are discussed.
A formula to estimate Kf, especially under high cycle fatigue, is
given, and then the distribution of Kf is roughly investigated
which is rarely studied until now, The following conclusions

are derived from these results,

1. Under high cycle fatigue conditions, the stress gradient at a
notch has almost no effect on Kf, but the three dimensional
stress at the hole and the smooth specimen size determine the

difference between Kf and Kt‘

2. Kf is a statistic function which is mainly related to the ma-
terial microstructure and the geometry of the notch.

3. Kf increases as the cycles to failure increase for the cyclié/—
hardening materials, and K. decreases as the cycles to failure
increase for the cyclic softening materials.
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