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The theoretical/numerical treatment of multiaxial static fatigue
strength uses finite element analysis of stress and deformation
fields., The results are used for 1ife time prediction by means
of statistics within an integrated software system for design
and analysis. The approach for life time evaluation considers
-mechanical and thermal loading.

1. Introduction -

The use of structural ceramics has increased in the recent
years. Excellent material properties like high temperature
strength, good corrosion resistance and thermal shock behaviour
makes them a candidate for high temperature applications. But
there are some characteristics, which must be taken under
consideration when designing with structural ceramics. The
fundamental characteristics of ceramic materials are that they
show no plastic deformation before failure and they have little
toughness. Under static tension stress conditions in air
ceramic materials show delayed fracture, i.e. a stady decrease
of strength with time. This behaviour is called "static fatigue"
and determines the strength from room temperature up to tempe-
ratures above 1 000°C until distinct creep occurs, which is yet
neglected. Furthermore the strength of ceramic materials shows
a great scatter which reflects on the time dependent strength.
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Therefore when designing with ceramics an important factor is
the computation of the reliability or probability of survival
of a structural component wunder <certain loading conditions.
The computation of stresses using finite element analysis is
the basis for this.

‘2, ‘Statistical strength description

In a controlled strength test with a batch of nominally identi-
cal test pieces of a brittle material, it is found that the

strength values 1ie on some distribution curve about an average
value, Fig.1. This value is usually the one quoted as strength.

The narrower the distribution, the more reproducible the strength
of the material, and the more reliable the material will be

" under load. If the distribution is wide, particulary if there is

a long tail down to Tow strength, the material has highly un-
reliable strength and should be wused with great caution.

Many factors affect the distribution width, including the way
the material is made, . the surface finish produced, and the
frequency of occurence of Targe microstructural defects, the
last, of course, having a profound effect on material reliabi-
Tity.

It has been found that the distribution function which describes

the test results best is that due to Weibull,

The basic Weibull equation describing the probability of
failure P., as a function of fracture stress. dg, is given by
the equation
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du characterizes the lower level of stress at which the proba-

bility of failure falis to zero,. do is a scaling factor and m
is kown as the Weibull modulus, describing the width of the
distribution. The higher m is the smaller the scatter of the
distribution. The ratio v/vo describes the influence of volume
under uniform stress. The larger the volume under stress, the
greater s the chance of there being a large flaw in it.
Usually the lower sttess parameter du is set zero and for a
batch of identical test samples the volume factor is set equal

one. Setting du equal zero follows for practical reasons.

An equivalent statistical description uses the survival proba-
~bitity. '

(2)

" 3. 'Fatidgue 'in ceramic ‘materials

Brittle materials, particularly glasses and polycrystalline
ceramics containing an intercrystalline glassy bonding phase,
weaken with time under load, Therefore 1ife time under con-
stant stress is 1imited.

This behaviour is called fstatic fatigue" as opposed to metals
where fatigue is a cyclic effect.

The physical explanation is that cracks or flaws grow slowly
with time " under subcritical stress until the crack reaches
a critical length.

Stow crack growth occurs as a result of a stress-aided ther-
mally-activated event and by chemical attack from the
environment within the crack.

The rate of crack propagation, v, with a stress intensity
factor K; "at the crack tip can be represented by following

equation: E0 - BKI]

kT
with £ as an effective activation energy, the Boltzmann
factor k, while Vo and B denote crack extension parameters.

Vo= v, exp[- (3a)
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For materials which show significant slow crack growth the
relationship may not be as simple as presented,

Fig. 2 shows schematically the type of relationship between
v and KI in.a logarithmic plot.

In the general case there are a number of distinct regions
as shown in.the figure.

- Region I is governed by slow crack growth and is highly
dependent on environment,

- In region II crack growth is limited by diffusion of the
environment. |

- In region IIl crack growth is independent of environment.

In regidn IIl intensity factor has nearly the magnitude of
fracture toughness KIC’ the crack accelerates very fast and
instantaneous fafilure occurs. ’

The slow crack growth Timit or static fatigque timit, Ko"
occurs at such low velocities in ceramic materials, smaller
than 10710 m/sec, that its existence has not been generally
proven.

Real ceramics often show only region I behaviour over the measu-
rable range of velocity. The velocity is highly dependent on

the measuintensity factor KI' Therefore the exponential
function is approximated by one term of the exponential series
and yie?ds that the crack extension, v, is given by

v = AK? . (3b)

with the crack extension parameters A and n.

Most data are plotted as log v versus log K giving a slope n.
The crack extension parameter n indicates how liable the
material is to fatigue. The Tower the value of n the more
susceptible the material is to slow crack growth.
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Therefore it is desirable to have a high n value for high per-
formance structural ceramics. For fatigue calculations it is
usual to make the following assumptions:

- Suberitical crack extension is given by the power law of
equation (3).

- No or negligible creep reactions occur and therefore
Tinear elastic fracture mechanics is valid to calculate
the stress distribution at material defects.

- For basic calculations a simple shaped crack with the
length 2a and éharp crack tips is considered, Fig. 3.
Plane stress conditions are assumed. This means the applied
stress o is perpendicular to the crack surface. The stress
intensity factor KI is described by /2/

KI = g ?/; Y N " 0 (4)

is the applied stressy a half the crack length and Y a
geometrical factor.

Faiiure occurs when the critical condition is reached.
Ky = Ke (5)

This is either if the crack Tength reaches a critical
value a, or by performing an inert strength test, where no
crack extension occurs. '

KIC=G /aCY
- (6)

Kie = °1c
- For all concejvable applied stresses the same subcritical

crack extension mechanism is valid.

-
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From these assumptions it follows that the time of
failure te is given by the upper limit of the time

integral over the appilied stress.
t

' f
n-2 - j Un(t)dt : . (7)
0

BGIC

This integral must be equal to a constant which contains sub-
critical and critical parameters of the considered material

B = 2/(n-2)AY2Kk "2 (8)

The strength S after time t and uniform uniaxial tension
is given by /3,4/

t 1/(n-2)
S(t) = [0252- %—fo”(t')dt'} C(9)
0

4. The statistical fatigue failure approach

The failure probability of a body subjected to a non-uniform
uniaxial stress can be expressed as /5/
Pe= 1 - exp£d{r(1+%)}mE;mv"1J{a/H(c)}de (10)
v .
with the unit tensile strengthﬁv, the unit volume v and
H (d) = 1 for positive (tensile) values of ¢ and -o for nega-
tive (compressive) values of §. characterizes the modulus of

the ratio of the mean failure stress of unit volume in uniaxial
compression, to that for uniaxial tension.

In general, the stress state at a point in a real component is
not uniaxial; it is characterized by three principal stresses.
When extending Equatjon (10) to cover the body subjected to
multiaxial stresses, it 1s necessary to establish a 'failure
criterionf for such stress systems, which expresses the
dependence of failure on the combined action of stresses present,
1ike the Tresca or von Mises criterion for metals.,
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For ceramic materials different criterions have been choosen,
Fig. 4/6-10/

- Maximum Normal Stress Criterion
= Coulomb-Mohr Criterion

- Maximum Strain Energy Criterion
- Griffith Criterion

- Weibull Criterion.

The experimental work on multiaxial stressed ceramic speci-
mens 1is not sufficiently extensive to give answer which
criterion describes the data best /11-13/.

Another multiaxial stress approach wuses the stress volume
integration around a point /14,15/.

For the further considerations, it is assument that the -failure
probability of an element due to one principal stress is inde-
pendent of the presence of other principal stresses. A second
~assumption is that the material is isctropic. It follows that"
the survival probability of an element subjected to three
principal stresses is the product of the survival probabilities
obtained by considering the element to be subjected to each of
the three principal stresses in turn. Equation {10) therefore
becomes

Y
Peo= 1 - exp[~{P(1+%J}m(cnomlov)mvzl (11)
where o o o
1 m 2 m 3 m
5 oe [y )™ (B ) )T vV
" Opopflog) nom (92 nomt(93)
v
Ohom 1S used for practical reasons.

This equation is first of all only valid at the beginning of
external loading or for inert condtions, when no subcritical
crack extension occurs.

For noninert conditions the strength degradation due to sub-
critical crack growth must be taken into account. This is
done by substituting the unit tensile strength 4, by
equation (9) in unified form and using the time dependent
principal stresses.
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With equations (9) and (11) the statistical fatigue failure
approach is formulated and can easily be connected with
Finite Element Analysis for numerical Evaluation of multi-
axial loaded ceramic components, Fig. 5. This treatment
allows quantification of reliability.

5. Finite element analysis

For the finite element analysis of ceramic components linear
elastic material behaviour is assumed since ceramics show
practically no plastic deformations.

The problem must be defined in the real time scale, because
the time values are used by static fatigue caliculations in

. the ceramics Tifetime processor. Time increments must be chosen

3uitab1y small for the periods, in which large fluctuations
of external loading occur, in order to represent the response
of the structure properly.

Since. the regions subjected to the greatest tensile stresses

“will have a.predominating influence on the value of Pf, it is

important to make these elements small. The elements in the
less critical, lower stressed regions may be larger.

By modé?Ting a thin element Tayer on the outer surface of the
component, the contribution of surface flaws to the failure
probability can be taken into account.

In order to obtain the volumes V of the finite e1ements,.it is
necessary to carry out a dynamic analysis prior to the actual
calculations and to evaluate the kinetic energy EK’ of each
element

£y = dvve/e2 (12)

where d denotes the density and v the velocity.
With unit density of the material and unit velocity defined,
the vo?qme of the element can easily be found

Vo= 2By (13)
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External loading of the component may consist of forces,
moments and thermal loading applied at nodes or element
faces. Residual stresses can be considered as initial condi-
tions at the beginning of the analysis.

6. Conclusion

The numerical treatment of multiaxial static fatigue of cera-
mic components is theoretically well established. Different
strength criterions and the strength function for static
fatigue can be combined with the statistical strength
description due to Weibull, Connecting the corresponding
theoretical relationships with Finite Element Analysis gives
the possibility . to calculate the reliability of ceramic
components. For validation of this treatment further experi-
mental 1nvestigations are to be done. : 2
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