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SUMMARY

The nonlinear behaviour of laminated composite plates is studied using a
shear deformable plate theory accounting for transverse chear (as in Reissner-
Mindlin's thick plate theory) and large displacements (as in von Karman's
theory), The analysis is devoted to the investigation of nonlinear bending
and buckling of composite plates, and delamination in plates with initial
bonding defects. Also given are some numerical results for rectangular plates,
obtained via finite elements, under various boundary conditions and loadings,

and for different stacking and orientation of layers and material properties,

INTRODUCTION

Laminated composite plates find wide application in the aerospace indu-
stry due to the their high stiffness-to-weight ratio, and to the capability
of the anisotropic properties to be tailored by varying the fiber orientation
and stacking sequence.

Because of the increasing use of fiber reinforced composite laminates
in engineering structures, studies on mechanical behaviour of composite plates
are receiving a great deal of attention.

Due to the high ratio of ip-plane modulus to transverse shear modulus,
the shear deformation effects are more pronunced in the composite laminates

than in the isotropic plates. The classical thin plate theory, based on the
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Kirchhoff-Love assumption that normals to the mid-surface before deformation
remain straight and normal to the mid-surface after deformation, is not ade-
quate for the flexural analysis of moderately thick laminates [1+4].

In this work an analysis on the nonlinear behaviour of laminated composi-
te plates is developed using a shear deformable plate theory |5+9] which
also includes nonlinear terms in the strain-displacement relatiomship. In
particular, the influence of the anisotropic properties of the laminate on
the nonlinear bending and buckling behaviour [10-11-14] of sandwich plates
is investigated.

In addition, the delamination failure in laminated composite plates
[12-15-16] with initial bonding defects between layers is studied both by
an analytical approach based on the fracture mechanics results and by a finite
element approach, in which adhesion between layers is modelled as unilateral

springs.

PLATE MODEL

With reference to Fig. 1, a laminated plate is examined, with n arbitra-
rily oriented anisotropic layers; the total thickness of the plate is h. The
origin of the coordinate system {x,y) is taken in the middle plane § of the

plate with the z-axis perpendicular to it.

Ll

Z
Y

Fig, 1 - Multilayered plate.

The displacement field is assumed to be of the form:
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w (x,y,2) = ulx,y) + 29 (x,y) , (1a)
UY(X:Y!Z) = V(XsY) + Zlily(X’Y) s (1b)
UZ(X:Y’Z) = W(X$Y) ’ (1C)

where Uy ,Uy ,Uy are the displacements in the directions x,y and =, respective-
ly; w,v,w are the corresponding midplane displacements, and y,, b, are the
bending slopes in the xz and yz plénes.

Assuming that the plate is moderately thick and strains are much smaller

than rotations, the nonlinear strain-displacement relations can be taken as:

= = 12 = g
€1 F Eypy T U, * 5 U wa,x =€, + zXy (2a)
—~ 1 2. a
- = = E 2b
£, €uy v,y + 5 Vg + zwy'y €y + ZX, (2b)
_ [ ]
€6 = QEXY = urY + VrY + fo W’y + Z(IPX:Y"}‘ wY:x) = Eg * ZX6 (2C)
€42 €, = 9> + 12 =2 = + =2 = (2d)
3 - zz  ¥X L[Jy s €4 = LEyy T lbx W, x s &5 ~ Eyz = wy + W,y

Since the constitutive relations are based on the plane-stress assumption,
the total potential energy of the plate, in the absence of body forces and

neglecting both body moments and surface shearing forces, is given by:

—f N_u_ds nfﬁnunsds -fﬁnlpnds ~fﬁsws ds - f G, ds (3)
Cl C2 C3 Cé C5

where N,,M;, etc., are the stress and moment resultants, glven by:

h/2 h/2 h/2 h/2

Ni=f0idz,Mi-—~foizdz,Q4=f04dz,Q5=f05dz (4)

-h/2 -h/2 -h/2 -h/2

Here, oik) (i=1,2,6) denote the in plane stress components and zy and zx4=
=7Zx+ty are the respective distances from the midplane to the lower and upper
surfaces of the k-t layer, t, being the thickness of the‘layer.

Moreover, the constitutive equations for the k-th layer are:

(k) (k) (k)
i = Uy €5

(5)

where Qij are the stiffness coefficients of the k-th layer in the plate coor-

dinates. From Egs., 4 and 5 we obtain the plate constitutive equations:
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Here, the stiffness matrices: in-plane (Aij), bending-in-plane coupling (B;;),
bending and twisting (Dij), (i,j=1,2,6) and thickness shear (Aij)s (1,4=4,5)

are given, respectively, by:

Zxr+1 Zr+1 "R+l
(k) (k) (k) 2
Aj_j = E Qlj dz 3 Bij = Z f Ql] zdz Dij = z Qlj z dz
k Y2 k Y2y k © %y
PR+l (1 .
Ry = Th by [ Qi) de 7
Zk :

Referring back to eq. 3, q is the transverse distributed force; u,, ugg,
¥, and ¥  are the normal and tangential components of the in-plane displace-
ments and rotations. Furthermore Ci are the portions of the boundary C of

the midplane £ on which ﬁn, ﬁn, Ms, an’ respectively, are specified.

DELAMINATION MODEL

A delamination model is now presented that is based on a unilateral con-
tact concept where the adhesion between layers is modelled by elastic springs
with finite tensile strength [12-15-16].

The spring reaction r depends on the elongation v (Fig. 2):

A

kw if w W,

r{w) = (8) r

0 if w > w,

where k is a positive constant.
arclg K ]

-
2y

Fig. 2 - Unilateral Spring response.
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Therefore, the spring strain energy cannot exceed U, = 1/2kw§ in tension.
When the strain energy of the springs reaches U,, the delamination of the
layers is assumed to occur. The relation between U, in the present approach
and [ in the fracture mechanics approach is given by U, =T. Hence, the

elongation limit w, of the springs is given by:

w, = 1/-2L- (9)

For a given material, characterized by the strain energy limit U,, it can be
proven that when k -+ © the unilateral solution converges to the fracture
mechanics solution.

The total potential energy of the plate is given by:

H=H+%fk(w) w? dQ (10)
Q
Note that the second term on the right side of eq. (10) represents the contri-

bution of the elastic response of the springs.

FINTTE ELEMENT FORMULATION.
Let the region § be divided into a finite number of rectangular elements,
Over each element the generalized displacements (u,v,w,$x,wy) are interpolated

as follows:

N N N
w = ): wifs, Uy = z Uyifss lDy = z ‘Dyifi (11)
= i=1 1

where u , v, w , Y, ,wy are the values of the unknown functions at the N
global nodes of the mesh and f; are the global interpolation functions. The
relevant governing equations of the nonlinear bending can be obtained by
applying the stationary condition to the functional (3) in which displacements
u,v,w,wx,wy are replaced by (11).

So, this gives the discrete form:

.

(12)

3

i
Il

i
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where K is the stiffness matrix, F is the nodal force vector and Q collects
the rodal values of the generalized displacements u, w ¥, V.

Tt should be observed that the stiffness matrix K depends on the so-
lution U. Therefore, a standard iterative procedure is used. As far as the
buckling analysis is concerned, the total potential energy of the system

is agsumed to be of the form:
Mu,A] = ®u) - Apu (13)

where u, v, w, Y, , ¢Y is a generalized displacement field, ¢ () is the strain
energy given by the first integral on the right side of Eq. 3, and A is a
scalar parameter which determines the magnitude of the prescribed external
loads p on the system.

As in [14], it is assumed that there exists a fundamental solution U.{A)

which satisfies the variational equation of equilibrium:
' {u (A),A] Su = @' [u, (W) - ApSu =0 (14)

The symbol ', above, denotes the Frechét derivative with respect to the dis-—
splacements field u.
The variational equation governing the buckling, if bifurcation takes

place, can be put into the form:
"
b,y Su=0 (15)

where @: stands for @u[uo(kc)];kc and u, are, respectively, the buckling load
and the buckling mode.

Eq. (11), by Eq. (8) becomes, in discrete form:
HIUL (W] gl =0 (16)

where {_ and !, collect the nodal values of the prebuckling displacement ¢,
and of the buckling mode u, , respectively. The tangential stiffness matrix
#H o= [Hij], evaluated along the prebuckling path 4_{(}), is defined by the

relation:

{2)
3

{1}

Hey LU 018y sy = @' Tug038u 6u'® (17)
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(1} (2)
for all admissible &u y Bu

For the numerical applications relative to the delamination problem,
a similar finite element model to the one above can also be developed.

It can be shown [12]} that also in this case the stationary condition of
the energy functional (10) leads to the following discrete equilibrium equa-

tion:

o=

U=k ' (18)

where U collects the nodal values of u,v,w, etc., E = X + Ky is the stiffness
matrix and F is the force vector. It can be observed that the stiffness matrix
g depends on the solution U, because of both the nonlinear strain~displace-
ment relation (2) and the nonlinear reaction-deflection relationship of the
springs.

Therefore, the solution of the unilateral contact problem can be obtai-
ned by solving a sequence of auxiliary bilateral problems in which the contri-
bution K, of the springs at the h-th step sequence is evaluated (according
to eq. (8)) from the displacement solution wy., of the previous bilateral
problem.

More precisely, at the h-th step the matrix Ky is evaluated as follows:

Kf;}i’.)= I IkPg" £ (x0) £5(r) (19)
] Ny Ng
where Ng; is the number of Gauss points of the e-th element and the coefficient

h
P( ) are defined as:

G
th-1) (h-1)
We (Gaussian weight at point (xe,ye))if w(xe,ye) = £, w < W,
()
B, = (20)
0 if w(xe,ye) = fiwih_l} > W,

Besides which, each of these bilateral problems are geometrically nonlinear

and can be solved by a standard iterative procedure.

NUMERICAL RESULTS AND DISCUSSTION

Formulations introduced so far, are then utilized in the nonlinear ana-
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lysis of moderately thick rectangular plates. The following material pro-

perties, typical of advanced fiber reinforced composites, are considered:

MATERIAL I (M1) : E;=25F,, G;,=G,;=0.5E, , v12=0.25
MATERTAL IT (GL) : E=3F, , G;,=G;;=0,3=0.6E, v;,=0.25
MATERTAL TII (GR) : E,=4O0E,, G,,=6,4=6,;=0.5E, v,,=0.25
MATERTAL IV (BO) : E;=l0F,, G;,=6;4=6,;=E,/E; v,,=0.22
MATERIAL V : By=25E,, G;,=G,;=G,;=0.5E, v, ,=0.25

E, and E, are, respectively, the layer elastic moduli in direction along

fibers and normal to them, G,, - G, and G,, are, respectively, the layer in-

plane and thickness shear moduli, and Vv,, is Poigson's ratio. In all calcula-

tions shear correction factors are assumed to be Ki = K; = 5/6.

Moreover the following boundary conditions are considered:

a) SS1 (Simply supported)
u(x,0) = u(x,b) = w(x,0)

li
O

il

W(X,b) = ﬁ)x(X,O) = ﬂJx(X,b)

b)

c)

v(0,y) = v(a,y) = w(0,y)
CSCS (Simply supported) ‘
w(x,0) = wix,b) = wy(x,O) = wy(x,b) = 0
w(0,y) = w(a,y) =¥,(0,y) =U,(a,y)
CC1 (Clamped)

w(b,y) =1,(0,y) =¥, (a,y) =0

i
<

V(O!Y) = V(35Y) =

all edges clamped u = v =w =¥, = 0 ,=0

d)lCCZ {Clamped)
wi(x,0) = w(x,b) = w(y,0) = w(y,a) =0
lpx (O!Y) = lpx(31Y) = l]Jy(X,O) ‘by(X,b) =0

e) SS2 (Simply supported)
V(st) = w(x,0) =wx (X,O) =0 ; W(X,b) =t‘l"x {(x,b) = 0
u(0,y) = w(0,y) =¥, (0,y) = 0 ; wla,y) =by(a,y) =0

NON LINEAR BENDING ANALYSIS

In this section some numerical results are presented concerning large

deflection analysis of square and rectangular plates obtained with a mesh of

F.E.M. 3x3 nine-node quadratic elements. It should be noticed that no appre-

ciable effect of the integration of shear terms was observed in calculations

for the quadratic elements used,
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Fig. 3 plots the nondimensional transverse central deflection wg/h versus
the Ei/E; ratio for a simple supported (SS1) square plate, In particular

the diagrams show the dependence of the coupling effect on the ratio Ei/Fj.

1
W,
1.25 e/h

— — —a/h=10
a/h=100

1.007

075

050

0251

Lnon finear analysis |

EfE,
10 20 30 ‘40 50 .

Fig, 3 - Square cross ply-plate under transverse load: maximum deflection
v/s El/E2 ratio.

A sufficiently high transverse nondimensional load q = (qO/Ez)(a/h)4
was assumed, in order to have an appreciable influence of nonlinearities,

Thicknesses of all layers are assumed to be constant. The influence
of shear deformability on nonlinear bending is pointed out again in Fig.
3, by the comparison of results relative to the ratios a/h = 100 and a/h
= 10, respectively.

Fig. 4 shows the variation of the nondimensional center deflection versus
the a/b aspect. It should be observed that the influence of coupling can be
extremely relevant, although the center deflection rapidly reaches the uncou-
pled solution as the number of plies are increésed. The influence of the
shear deformability is confirmed by the different values of center deflection

obtained for a/h = 10 and a/h = 100,
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125 e = —
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Fig. 4 - Center deflection v/s
the aspect ratio a/b of a cross
ply plate under transverse load.
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Figs. 5 a,b,c shows the variation of the nondimensional center deflection
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Fig., 5 =~ Center deflection of two-
layers plate v/s fiber orientation.

15

15 3¢ 45 e 75 90
(twc/h) with fiber orientation of a two layer angle-ply plate for various
b/a ratios. Fig. 5a concerns a Glass-Epoxy laminate (material II), Fig. 5b
is relative to a Graphite-Epoxy one (material TII) and Fig. 5c considers
a Boron-Epoxy laminate (material IV), In all cases the a/h ratio was fixed
at 10 and the nondimensional load q was considered to be 50. As can be obser-
ved, there is a large difference between linear and nonlinear solutioms.

Figs ©6a, b shows the variation of the nonlinear to linear transverse

displacement ratio versus q = (qo/Ez)(a/h)q, under different boundary conditi-
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Fig. 6 - Three-layered sandwich plate under transverse load: linear and
non~linear bending ratio v/s undimensional load.
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ons, for a three-layered sandwich plate.

The nonlinear effect increases with load; the effect of nonlinearity
is at a minimum in CC2 boundary conditions while the maximum effect is found
CCl boundary conditions.

This is due to the inclusiom in the CCl boundary conditions of nonlinear
terms in the strain displacement relations and the suppression of axial di-
splacements which may have contributed to the maximum nonlinearity of the
plate. Case (a) is different to case (b) regarding the value of Young's modu-

lus of isotropic layers.

BUCKLING ANALYSIS
The first example considered here is an angle-ply square plate composed
of material II, subject to biaxial uniform compression N = N, = N, and under
SS2 boundary conditions. This scheme was already considered in [13] in which
the Kirchhoff-Love thin plate theory was used.
In Fig. 7, the nondimensional buckling load versus angle-ply orientation

is plotted.

0] N

100 layers

301
6 layers

204

10
2 layers

— D]

* PRESENT ANALYSIS

8

M.
o

10° 20° © 30°  40°
Fig. 7 — Angle-ply square plate {SS2 boundary condition, material II} under
biaxial compression: critical buckling load v/s angle-ply orientation
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Results are obtained by using a finite element computational procedure and
compared to those of Ashton and Whitney [13]. As can be seen, the influence
of coupling on buckling is very pronounced. In fact, when the number of layers
is large,.the "orthotropic" solution is attained, and higher values of the
buckling load are reached, with an optimal value of the orientation angle:
0 = 45°,

On the other hand, for the two layer plate example the influence of
coupling on buckling is strong, as shown in Fig. 7. In this case the agreement
between analytical {13] and the F.E.M, results is less close than the "ortho-
tropic" one, owing to the influence of the orientation angle on the shape
of the buckling mode,

The second example considered in the buckling analysis, is devoted to
focus the effect of the aspect ratio a/b. For this goal the behaviour of pla-
tes, composed of different materials and subject to uniform uniaxial compres—
sive load, was analyzed.

In Fig. 8 the critical load Ny is plotted against the aspect ratio a/b;
note that the buckling mode depends both on the a/b ratio and the material

properties,

buckling mode

- ==

e —

Fig. 8 - Variation of critical buckling load (uniaxial compression)
with aspect ratioc and material properties,
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DELARINATION ANALYSIS
Here, some numerical applications are developed starting from the analysis
obtained in previous sections.

The plate model schemes are shown in Figs. 9a, b.

a) b)

Fig. 9 - Square plate example: (a) isotropic, (b) orthotropic.

The first scheme (Fig. 9a) refers to a square isotropic two-layer sandwich
plate with an initial defect: square (side 2L,) or circular (radious L,).
The plate is subject to a uniform edge pressure O and to a symmetrical (with
respect to the x-y plane) transverse load imperfection €F, F being given by:
F=hD/4al? (with & = 0.0056).

The second scheme concerns an orthotropic square plate subject to a uni-
axial edge load O in the x direction and to a transverse load imperfection eF
similar to that of the square isotropic plate.

In the application of the finite element technique, a higher accuracy is
evidently required in the proximity of the delamination front,

Therefore, the finite element mesh refinement is limited to a plate re-
gion defined by a suitable value of the parameter L, with a sufficient number
N, of mesh divisions beyond the delamination front as shown in Fig., 10. Due
to symmetry, only a quarter of the plate is modelled.

Regarding the numerical applications, the values N,=4, N;=10, N =18,

1
L;=5X (with A = (Z;D/k)/4 were adopted.
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Fig. 10 - Finite element mesh of a plate with a circular bonding defect.

In Fig, lla,b,c significant results are given; in particular the interla-

minar tensile stresses r/r, at the delamination front are plotted for given

values of the adhesion energy parameter BO=FL?/U n, where ¢ =4m’D/17h is

assumed. Results refer to cases of circular and square bonding defects both

for isotropic and orthotropic plates,

and are obtained by using the value

1=10"" of the spring stiffness parameter'f:kli /D (D: flexural stiffness).

/9% 4

_n=m
- £3100
1:01, L/L=04

104

— k=10
- §=100

[£:04, Lt 04]
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— R=10
-em 100

[e-04. 1104
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CIRCULAR
DEFECYT

Fig. 11 - Square plate example (h/L = 0.001)
interlaminar normal stresses at the delamina-
tion front.

(c) isotropic.

L1}

&0
oL

c)

»
.

(MAT. IT)

(a), (b) orthotropic
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It is worth noting that the onset of delamination depends on the adhesion
energy parameter f,, particularly in the case of an orthotropic plate.
The third example presented concerns the delamination of a two-layer

square plate of side a (Fig. 12) subject to transverse load F.

Fig. 12 - Delamination of a two-layer sguare plate.

The weld has an initially defective sduare portion of side L,. Results showing
the load~deflection relationship and the shape of the opening front are given

in Fig. 13. The quantities W,L* defined as:

W =%—-— p¥ = |/ 2D (21)

W=t W=2 W4 W6

0 A}/ Az A/ Ag

NS £-0522
| 7-0738
¥ =03
3 afh=1¢°
afi=10
afll=522
ﬂ\.
=4
t4
£ OAl, OB,
= - —
g W Q= 0=t
o 1 10906 0522 | 0738
2 1120 1037 | 0915
4_h270] 2000 | 1.842
6 _[1467] 2640 ] 2470

Fig. 13 - Evolution of the opening front.
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Finally in Fig. 14 some results relative to the delamination buckling of
a symmetrically compressed two-layer isotropic narrow-plate are presented.
In particular, a comparison between analytical results, obtained via fracture
mechanics, and those obtained by the F,E.M. unilateral contact approach is
shown. A fair agreement can be observed between the two approaches when high
values of the spring penalty parameter "L’=k21:,/D are used,

From previous results it can be concluded that the proposed F.E.M. ana-
lysis represents an efficient tool for studying two-dimensional problems,

where the fracture mechanics approach is harder to apply.

A /0. _ < B -

QB ]
A
08 £:001
a;:001
. 4 analytical solution 14
04 — o 5=10
finite element solution {o v=10
i av=10°
Q2 -

002 004 Q08 008 010 012
4] 1 i 1 1 1 1 £ § i 1 1 |

| MA ] A
Q2 -

K9

Fig. 14 - Symmetric narrow-plate model with initial imperfection € = f,/%,.
Central transverse deflection w v/s nondimensional applied load
0/0co s+ and delamination parameter ¢ =2/%2,-1.

Oco = 47D ¢ local buckling load;
% : actual opening length;
a, = 4T g/’ O., : adhesion energy parameter.
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