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ABSTRACT

A finite element program has been developed to examine the behaviour of
axisymmetric structures subject to torsion. Qutput from finite element analysis
is utilized as input to fatigue life prediction programs based on the local strain
approach. Stress raisers are accounted for by Neuber's rule or by load-local
strain curve, Torsional tests with constant or variable loading amplitude on
notched specimens have been performed. Good correlation have been found
between experimental results and theoretical predictions.

Symbols

M, torque amplitude;

radius of the net section of the specimen of fig. 2.2;

local shear stress amplitude on the specimen surface;

local shear strain amplitude on the specimen surface;
nominal shear stress amplitude on the specimen surface;
nominal shear strain amplitude on the specimen surface;
amplitude of the angle of twist per unit length of the specimen;
cycles to failure;

shear modulus;
polar moment of inertia;

theoretical stress concentration factor in torsion;
effective stress concentration factor in torsion;

effective stress concentration factor in torsion;
fatigue notch factor in torsion.
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1. - INTRODUCTION

The influence of stress and strain concentrations on fatigue life strength of
machine components has been studied since the end of the last century. The
introduction of finite life design has focused the attention of researchers on low
cycle fatigue, In this field strain becomes obviously the leading parameter [1].
The knowledge of the strain history experienced in some areas of stress
concentration is a very useful tool to evaluate the life expense.

Aim of this work is to predict fatigue life of components subject to applied torque
histories utilizing the local strain approach {2].

Low cycle fatigue tests have been performed on notched specimens in torsion.
_ Tests have been carried out in load control with constant or variable torque
amplitudes. -

Specimens utilized simulate the stress and strain concentrations usually found
in shafts connecting turbine to alternators in large electrical power plants, The
samples have been analysed theoretically utilizing a finite element program laid
out to study axisymmetric structures subject to antisymmetric loading.

The code has been tested in the elastic field comparing the results with data
deriving by literature (Peterson). Numerical results have been summarized in
torque-local strain arplitude curves.

The values obtained by the finite element analysis can be used as input for two
life prediction programs, previously developed, based on Neuber's rule or on both
load-local strain curve and Wetzel matrix methods.

Satisfactory comparison between theoretical life predictions and experimental
results have been found.

2. - FINITE ELEMENT PROGRAM TO ANALYSE AN AXISYMMETRIC
STRUCTURESUBJECT TO TORSION

The theory corresponding to the finite element of axisymmetric structures
subject to antiplane loading is utilized. Both elastic and plastic behaviour are
considered. Results corresponding to a notched specimen subject to pure torsion
are then exposed.

Referring to the geometry considered in fig. 2.1, it is assumed that plane sections
remain plane after load being applied. It follows:
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Strain can be expressed as:
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where N; are the shape functions of the element.
In the elastic field the stiffness matrix is expressed as [3]:

K=|[ B'D B 2nrdraz = [[ BTG B 2mrdet] dfan

wherer = 3 Nj 1.

in the plastic field, the stiffness matrix is found utilizing Prandtl-Reuss
incremental theory. Equivalent stress () is evaluated according to the Von

Mises criterion. Isotropic strain hardening is assumed.” The incremental

equilibrium equation is [4]:
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Kp(t) dA = R(t+h) - F3 (D @.0n
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Erp is the tangent Young modulus of the discretized (trilinear) stress-strain
curve, Oy is the yield strength, R (t+h) and Fj(t) represent the external and
internal loadings.

The non linear equation (2.1) can be solved according to the Newton-Raphson
iterativemethod.

An “ad hoc" finite element program running on VAX 780 has been written
according to the above mentioned procedure. The code has been tested utilizing
the specimen geometry of fig. 2.2. The mesh of 70 isoparametric elements of 8
nodes is shown in fig. 2.3. Fig. 2.4 shows the material curve utilized as input to
the program. Torque-local strain curve is reported for the specimen of fig. 2.2.
The corresponding curve for a smooth cylindrical specimen with the same net
section is shown as a comparison (fig.2.5). ‘
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3. - VERIFICATION OF THE RELIABILITY OF NEUBER'S RULE

If Neuber's rule is assumed to be valid, it results for the actual problem:

K K, = K2 3.1
where:
K =(1/To) K',- = (Ya/Ta)
where:
Ta = GYae is the local shear stress amplitude
Ty, = GTye is the nominal shear stress amplitude
and:
Yaa is the local elastic strain amplitude
Tae is the nominal elastic strain amplitude
Equation (3.1) may be rewritten:
Kt2 = (Yae/Tae) Wa/Ta) 3.2

The finite element program gives, as output, shear strain (y) values as a function
of torque values (M). It is straigthforward to compare the cuwve M = {¥)
corresponding to the noiched specimen (fig. 2.2) and the cuve M = g(y)
corresponding to the smooth cylindrical specimen with cross section equal to the
net section of the notched one. Results are shown in fig. 8.1. Values of K¢

obtained according to equation (3.2) are reported. In the elastic range it should
result K2 =(1,4T2 = 2,16, while the computed value is about 1,85. It must be

considered, however, that evaluations have been made in Gauss points without
extrapolating the results to the surface, This can be misleading expecially for the
notched specimen. -
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4.1 - EXPERIMENTAL TESTS AND MATERIAL UTILIZED

Low cycle fatigue tests have been performed in torsion on notched specimens (fig.
2.2) characterized by a theoretical stress concentration factor (Kp of 1,47.
Experiences have been made in load control, Seventeen different torque histories
have been considered, Seven of them have constant torque amplitude; they have
been applied until specimen failure (it is considered as failure a fixed percentage
decrease in the load amplitude). Four histories are constituted of four blocks of
- decreasing torque amplitude; each block has a preset constant load amplitude
and the whole history is applied several times until failure. The last six histories
are composed of only two blocks of decreasing torque amplitude; the second block
is applied wntil failire.

An Instron series 8000 hydraulic testing machine has been utilized together with
a testing rig able to convert alternate linear motion of the actuator to alternate
torsion [5].

The rotor steel utilized have been previously characterized through push-pull
and torsion low cycle fatigue tests (chemical composition and mechanical
properties are reported in [6]). ‘

4.2 - LIFE PREDICTION NUMERICAL PROGRAMS

Two numerical programs previously developed [5) have been considered; they
predict fatigue life of components subject to periodical loading histories utilizing
the local strain approach [2].

They assume:

a) a counting method to reduce complex loading histories to a simple
superposition of constant amplitude closed loops;

b) a damage accumulation criterion to evaluate the life reduction due to the
simultaneous application of the previously identified loops; -

¢) analytical models for cyclic and fatigue curves of the material;

d) a method to accoumt for stress and strain local concentrations.

a) Both programs utilize a "rain-flow" counting method modified to accoumt
for the "memory effect" of the material; the peculiarity of "rain-flow" is that it
considers each peak-valley range only once, it assumes each minor peak-valley
range as an interruption of the larger ones and it identifies as cycles those pairs
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~ of peaks and valleys corresponding to closed loops in the siress-strain plot
relative to local areas of strain concentrations (2,7].

b) Miner's rule is chosen as the damage accumulation criteria; the
approximations which affect the fatigue results often do not justify the use of
more sophisticated methods that can override the shortcomings of Miner's rule
only by introducing much more involved calculations or by determining further
experimental parameters.

¢) An extension of Ramberg-Osgood's eguation has been utilized as a
mathematical model for the shear stress-shear strain curve:

Ya = (1/G) + (1o/H )1

The following equation has been employed for the fatigue curve in torsion (which
is the analogous of the expressions developed by Manson, Coffin and Basquin in
uniaxial low cycle fatigue [1}):

Ya =A QN +B (NP 4.1)

d) Program FATICA 3 considers an extension to torsion [8, 9] of the Neuber's
rule [10]:

e =K@ T, T,

to account for stress and strain raisers.
Program FATICA 4 utilizes a torque-local strain curve 1o analyse the stress and
strain concentration zones in a component (§ 4.5).

4.2.1 - Numerical program based on Neuber's rule (FATICA 3)

Nominal stress history is analysed, peak to peak, through the “rain-flow"
algorithm starting by the largest peak or valley; a subroutine simultaneously
predicts the local stress-strain hysteresis history. _

The first peak (or valley) results by sclving the system between analytical
expressions of the stress-strain curve and Neuber's hyperbola:

TaYa™ Kt2 Ta Ty
¥y = (1,/G) + (talH')ﬂ-"n'} |

where:
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I, =(T,/G) + (T,/H'X1a"

If the hypothesis of homothety between cyclic and hysteresis curves is assumed
[11], all the remaining peaks (or valleys) can be obtained by the solution of the
system:

At Ay=K2 AT AT
AyI2 = (AT2G) + (Ar/2H 1D

The strain amplitude and the mean stress are obtained for each closed loop
identified by "rain-flow' counting method; total damage results as the
summation of the partial damage of each cycle (eq. 4.1) according to Miner's
criterion. "Rain-flow" algorithm has been modified to account for the "memory
~ effect" of the material {12},

4.2.2 - Nominal stress determination
Stress concentration factor is defined as the ratioc between local notch stress and
nominal stress. Nominal stress is defined in torsion (elastic field) as:

T, = 2M,/nr 8

by considering the net section of the specimen,
If the stress amplitude is too large even the nominal stress becomes larger than
the yield strength. Nevertheless the following equation developed by Nadai can be
utilized to obtain a significant nominal stress:

T, = (1/2nr,3) [0, (AM,/d6,) + 3 M,] 4.2

If the amplitude of the angle of twist per wnit length (6,) is expressed as a
fumction of the torque amplitude (M) by means of: -

8, = My/GI, + (My/Ho¥nod 4.3)

the equation (4.2) can be rewritten:

T, = (M /211, 3) (3 + 0,/[My/GLy + (/ng) (My/HoXnod) .4
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Expression (4.4) allows the nominal stress to be obtained directly by the torque
amplitude. '

Values of H, and n, can be evaluated by tests on smooth specimens with cross
sections equal to the net sections of the notched samples, in a very similar way to
that followed for the determination of the cyclic stress strain curves [2]. In this
case the M,-0, curve is not available experimentally but it can be obtained by
finite element, starting from the torque-shear strain of smooth specimens (fig.
2.5), or theoretically, utilizing the expression also due to Nadai:

M, =(2n/6,3) § fY) 2 dy

which allows the determination of the M,- 8, curve by the knowledge of the 1, - y,
curve relative to the steel considered [6],

4,3 - Program wutilizing the load-strain curve (FATICA 4
The program utilizes directly the torque-local strain curve. The latter can be
obtained by several methods.

a) Experimental methoed
The curve results as the locus of the tips of the stable hysteresis loops

corresponding to different torque value in the M, - y, plot. The method needs the

local strain amplitude being measured accurately. This is not always feasible.

b) Finite element
The M,- ¥, curve can be easily derived by the finite element analysis of the

component.

The mathematical approximation of the load-local strain curve is obtained. The
curve is discretized and the coordinates of the extreme points of the resulting
elements are memorized in arrays inside the life prediction program, The first
peak of the hysteresis loops in the torque-local strain amplitude plane (Mg- y,)
can be identified by the value of the first peak of the applied torque history. All the
remaining peaks or valleys can be obtained by the knowledge of the applied
torque peaks utilizing the already mentioned hypothesis of homothety between
hysteresis and cyclic load-local strain cwves. An "availability" index is
associated to each element in which the load-local strain curve is divided.
Fractions or multiples of the elements are considered and treated according to
the method of availability matrix introduced by Wetzel [2].
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The resulting strain history peaks and valleys are analysed in a similar manner
to identify the stress-strain hysteresis loops utilizing discretized local stress-local
strain (1, - ¥,) curve. The closed loops are individuated (in term of strain ranges)
through a ‘“rain-flow’ counting method utilizing the already mentioned
availability method [2}. Cumulative damage is again obtained by application of
Miner's rule. |

4.4 EXPERIMENTAL RESULTS AND DISCUSSION

Experimental results against theoretical predictions for the histories described
in & 4.1 and for the component of fig. 2.2 are summarized in the graphs of fig. 4.1
and 4.2. .

The predictions deriving by the application of program FATICA 3 are even too
conservative especially in the low cycle fatigue region. This is in agreement with
data of other researchers concerning previsions based on Neuber's rule {1, 2].
Program FATICA 4 is more realistic; theoretical predictions ave nearer to the
experimental results (with a factor of less then three for the ratio between them)
but unfortunately they are not conservative, '

If the agreement could be more deeply assessed the use of program FATICA 4
together with a somehow defined safety factor could be the best way to face the
problem of life predictions. '

In conclusion FATICA 3 and FATICA 4 seem to predict lower and upper bounds
for the number of cycles the actual component can sustain.

5. - CONCLUSIONS

The comparison between M, -y, curves relative to notched and smooth specimen

shows that Neuber's rule is not completely verified expecially at high values of
the applied loading (fig. 3.2). This can, however, be due to the coarse mesh
utilized in the finite element analysis.

Nevertheless the application of Neuber's rule (FATICA 3) leads to conservative

predictions of fatigue life for the component of fig. 2.2,
The use of the fatigue notch factor (K¢ = 1,41) instead of the theoretical stress

concentration factor (§; = 1,47) in the equation 4.2 slightly improves numerical

predictions of experimental fatigue lives (fig. 4.3) owing to the closeness between
the values of K¢ and K.
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The more realistic predictions of FATICA 4 could be interesting but they are
strongly dependent on the rigth determination of the analytical expression of the
M;- ¥, curve. Two methods to obtain it is indicated in this paper, each one with
its own shortcomings. In the experimental approach, local strains are not easy
to measure for the actual component; the finite element method needs a fine
mesh near the strain concentration zones to be realized.

Future work could be the verification of the influence on the results of the
alternative application of the Henky or Prandtl-Reuss equations on the results of
finite elements analysis. Experimental tests utilizing long periodical histories
simulating the real random torsional fatigue cycles sustained by turbine-
alternator shafts are in progress; the comparison with theoretical predictions
could be useful to better understand the worthiness of the different programs for
fatigue life predictions.
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Fig. 2.1 - Mode! for the specimen in torsion,
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Fig. 2.2 - Torsional specimen K, = 1,47.
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Fig. 2.3 - Discretization of the specimen (finite element program).
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Fig. 4.1 - Comparison between experimental results and numerical predictions
of fatigue lives (FATICA 8; K = 1,47).
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Fig. 4.2 - Comparison between experimental results and numerical predictions
of fatigue lives (FATICA 4).
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Fig. 4.3 - Comparison between experimental results and numerical predictions
of fatigue lives (FATICA 3; K¢ =1,41).
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Fig. 4.2 - Comparison between experimental results and numerical predictions
of fatigue lives (FATICA 4).
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Fig. 4.3 - Comparison between experimental results and numerical predictions
of fatigue lives (FATICA 3; K¢ = 1,41)






