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Conventional notch strain estimation routines utilize as input the elastic stress concentration
factor and the cyclic stress strain curve. Several notch strain estimation techniques are examined
and compared to an approach which also considers the distribution of multiaxial elastic stress
and strain throughout the notch cross section. This is used to approximate the elastic-plastic
stress and strain distribution after the onset of cyclic yielding. This information is useful not
only for local strain-based crack initiation life predictions, but also for weight function '
approaches for the prediction of subsequent crack propagation.

The techniques under investigation are applied to sets of specimens with identical bending
stress concentration factors, but whose geometries differ enough to affect the distribution of
stress beneath the point of maximum stress. Stress concentration factors range from 1.5 to 2.0
on specimens with shoulder fillets and circumferential grooves. Elastic stresses and strains are
analyzed using the finite element method for the filleted shafts and using Neuber’s closed form
solution for circumferential notches of hyperbolic profile. The conventional methods predict the
same notch root strain for constant amplitude bending specimens with the same stress
coricentration factor regardless of the geometry. However, accounting for the subsurface stress
distribution suggests that substantially differing notch root strains may develop. Predictions
using all techniques are presented along with elastic stress and strain distributions for the
geometries under investigation.
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Introduction

The application of local strain-based fatigue damage parameters requires an assessment of
the cyclic elastic-plastic strain (and/or stress) state in the immediate proximity of stress
concentration factors. The use of elastic-plastic finite element methods to analyze stresses and
strains in complex geometries is increasing. However, the fine grid refinement required to
accurately model most engineering notches makes this approach less than practical from the
standpoint of the everyday designer. Several techniques have been developed to predict notch
elastic-plastic strains using only elastic stress information and cyclic material data [1-18}. The
most popular has been the extension of Neuber’s work [1] to cyclic loading [2]. Most
approaches are applicable to uniaxial loading only and do not explicitly consider the existence of
multiaxial stresses that develop at notches.

Conventional notch strain estimation routines are based on some form of the stress
concentration factor, Kt. This basis for elastic stress information is limited by several
considerations:

(a) Such factors exist for only a finite number of geometries, and most engineering components
do not lend themselves to characterization by a simple Kj.

(b) K¢ gives only the maximum elastic stress component and disregards the multiaxial stress state
which develops even under uniaxial loading.

(c) K¢ provides no information about subsurface stresses,

This paper discusses an approach which utilizes the distribution of elastic multiaxial stress
and strain throughout the cross section of a component containing a stress concentration. The
approach assumes that the distribution of strain remains the same in the cross section even
though the relationship between stress and strain is no longer elastic in the notch vicinity. For a
given strain distribution, the cyclic stress-strain material data can then be used to compute the
corresponding elastic-plastic stress distribution and applied external forces. The approach can
predict very different notch root strains for components with identical stress concentration
factors but whose geometries differ enough to affect their subsurface stress distribution.
Conventional approaches, using only Ky to characterize elastic stresses, predict the same cyclic
notch strain for the components just mentioned. The approach presented holds promise for
design applications in light of the fact that elastic finite element analyses are becoming more
practical for use in everyday design. The strain estimations permit the analyst to apply a wide
range of local strain based fatigue damage parameters. Also, the elastic stress distribution
required as input may be used with fracture mechanics weight function approaches to analyze
fatigue crack propagation through the cross section [18].

Conventional Notch Strain Estimation Approaches
Many approaches have been developed to approximate notch elastic-plastic strain using
elastic stress information [1-18]. The most popular approaches attempt to extend the results
from Neuber’s analytical solutions of shear stress and strain in prismatic notched bodies [1].
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Most of these neglect the multiaxial stresses which develop at axially loaded notches, and
therefore, tend to overpredict strain. This makes the approaches somewhat appealing from a
design standpoint. Neuber’s Rule is expressed as:

Ktzsnomenom = ONEN (1)
__ON oN 1/n _ Snom Snom 1/n'
€N = 5ol + ['ﬁ] €nom = 53 + [ K } (2)

where
Snom = nominal stress at notch location

enom = nominal strain at notch location
on = notch stress )
en = notch elastic — plastic strain from Neuber
E = elastic modulus '
K' = eyclic strain hardening coef ficient

n' = cyclic strain hardening ezponent

The elastic-plastic relation for nominal stress and strain is used to account for higher loading
amplitudes. The assumption is made that plane sections remain plane so that the bending strain
gradient is linear. The resulting stress distribution, times the distance from the neutral axis, may
be integrated over the cross section to compute the applied external moment. For further details,
see Refs, [17-19].

Glinka [15,16] developed a notch strain estimation routine based on the concept of
equivalent strain energy density. The approach is based on the assumption that the distribution
of elastic strain energy density in the notch tip vicinity remains the same after localized cyclic
yielding occurs. The approach has been successfully applied to notched flat plates under a
variety of loading conditions. A version of Glinka’s approach is presented below for plane stress
situations. :
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where
ap = Glinka notch stress estimation

ep = Glinka notch strain estimation

The nominal stress and strain are related as in Eqn. 2 and the applied external load must be
found accordingly. The Glinka and Neuber approaches are applied as outlined below:
(a) Choose enom, the nominal surface strain.
(b) The distribution of nominal strain is considered linear, therefore the nominal stress
distribution is found from Egn. 2.
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(c) The product of the nominal stress at a given location, times the distance from the neutral
bending axis is integrated throughout the cross section to compute the corresponding external
applied bending moment.

(d) With M computed for a given Spom and epom, the notch stress and strain may be estimated
using Eqns. 1 and 2 for the Neuber analysis and Eqns. 3 and 4 for the Glinka approach.

Strain Distribution Technique

This approach is similar to that described in Refs. [17&18]. The distribution of multiaxial
elastic strains in bending is assumed to remain the same even after the onset of plasticity at the
notch. Given the axial strain distribution, the stress distribution may be computed with the
cyclic stress strain curve and used to determine the corresponding applied loading. To apply the
approach, the following steps are taken, -
(a) The distribution of elastic, axial strain is obtained through the cross section containing the

notch. This will usually be determined from an elastic finite element analysis. For the

circumferentially notched shafts examined here, a piecewise linear approximation of the

strain distribution along a radial line below the maximum strain location is sufficient [17,18].
(b) The stress distribution is computed through the cross section using the uniaxial cyclic stress-

strain relation for the material, This neglects the multiaxiality of through-section stresses as

demonstrated in Fig. 2 and 3.
(c) The product of the stress times the distance from the neutral bending axis is integrated over

the entire cross section to obtain the corresponding applied externat loading.
For circular cross sections, this integration need only be made along a radial line beneath the
point of maximum stress [17,18]. For general cross sections a first order numerical scheme is
adequate if a sufficient number of integration points are defined in the steep section of the
distribution near the notch root. The BASIC program used to generate the moment versus notch
strain estimations for round shafts using a piecewise linear approximation of the strain
distribution is presented in the Appendix.

Specimen Geometries and Material Properties

The three approaches described above are applied to sets of specimens with identical elastic
bending stress concentration factors, but very different elastic stress distributions, Shoulder
filleted shafts are modeled using axisymmetric finite elements, and a typical mesh cross section
is shown in Fig. 1. The meshes were specifically designed with a fine grid at the notch to
capture the sharp notch stress gradients. Stress concentration factors predicted from the finite
element analyses were within 2% of values from Peterson’s handbook [20]. Neuber {21]
developed a closed form solution to the elastic stresses in a circular shaft with a circumferential
groove of hyperbolic profile. Figure 1 presents both geomeiries and the stress concentration
factors examined in this study. Figures 2(a) and 3(a) present multiaxial elastic stress
distributions for stress concentration factors of 2.04 and 1.53, respectively, normalized by the
nominal elastic stress at the notch root. ‘The elastic strain distribution for each geometry is also




- 15.6 -

shown in Figs. 2(b) and 3(b), normalized by the nominal elastic strain at the notch root. At any
point along the radius, the normalized elastic axial strain is computéd from the elastic stress
components by:

e _0x_ [0 0r
€nom - S. ‘u[sc + Se] (5)

where
oz, 0g and o, = azxial, circumferential and radial elastic stress

e: = arial elastic strain
enom = nominal elastic strain
S. = nominal elastic stress = epom /B
it = Poisson's ratio = 0.3

Notice from Figs. 2 and 3 that the constraint on transverse stresses at the notch root results in
normalized axial strain distributions which are considerably lower than corresponding axial
stress distributions.

A net section diameter of 40 mm was chosen for all specimens and the corresponding curves
for bending moment versus notch strain computed using the three notch strain estimation
procedures described above. The material properties for normalized 1045 steel of E=202375
MPa, K’=1286 MPa and n’=0.2124 are used in all cases and Poisson’s ratio was chosen to be
0.3. The strain estimations are presented in Figs. 4-6 and are discussed below. It should be
noted that the finite element models were loaded in cantilevered bending while Neuber’s
grooved shaft solutions are for pure bending. The difference is assumed negligible for this
analysis.

Strain Estimations

From the curves in Figs. 4-6, the following observations can be made. The strains estimated
for the filleted shaft are considerably lower than those for the grooved shafts, using the strain
distribution approach. (For a strain amplitude of 0.007 in the grooved shaft, which corresponds
to a fatigue life of a few thousand cycles for normalized 1045, the fillet strains are predicted to
be about 40% lower.) The other routines predict the same notch strains for either geometry.
Note that for the relatively mild stress concentration factors of 1.68 and 1.53, the Neuber and
Glinka approaches correlate well with the strain distribution approach for the filleted shafts. The
predictions for the "higher" stress concentration factor of 2.0 show decreased correlation. For
the sake of comparison, the three methods described in this paper are applied to the shaft shown
in Fig, 7, using elastic stress data from Ref. [22]. The predictions are shown in Fig. 8, along with
stabilized bending strain amplitude data, measured with strain gage rosettes [17,18]. Figure 8
shows that the strain distribution approach is comparable to the other two approaches in making
adequate notch strain estimations. The approaches all tend to overpredict strains, but this could
be explained by physical considerations involving the use strain gages in sharp notches. This is
discussed in the next section.
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Discussion

A point must be made concemning the assumptions used to implement the Neuber and
Glinka approaches. The Neuber approach would predict different notch root strains for the
filleted shaft and grooved shaft if the fatigue notch factor, Kf, were used instead of Ky [2].
However, note from Fig. 1 that the notch root radii for the hyperbolic grooves are considerably
larger than the corresponding fillet radii. Using empirical relations [23] would result in a lower
K for the grooved shaft and, therefore in lower strain estimates. It should also be noted here
that Glinka [16] presents a modification to Eqns. (3) and (4) which account for the plastic
redistribution of notch root stress and strain near the notch tip. This would change the
predictions slightly for the mild notches examined in this paper but would not produce different
estimations between filleted and grooved specimens. Hoffman and Seeger [14] developed a
modularized approach which requires assumption or input data regarding the notch constraint on
transverse surface strains during cyclic plastic loading. It is shown that for grooved shafts in
tension, the ratio of axial to circumferential surface strains may be assumed constant as elastic

strains become elastic-plastic. ‘This assumption is used with an appropriate empirical relation
between notch and nominal stress (such as Neuber’s rule) and appropriate plasticity relations to
relate notch strains to applied loading. Since the circumferential elastic stress at the notch is
similar for the filleted and grooved specimens (Figs. 2 and 3), the approach would not predict
significantly differing notch strains between the two specimens,

The use of the elastic strain distribution for the approach proposed in this paper has
advantages from several standpoints. The majority of engineering components do not lend
themselves to simple characterization by a single stress concentration factor. For instance,
consider the lifting hook shown in Fig. 9(a). No reliable stress concentration factors can be
found for this geometry, particularly considering the noncircular cross section. To investigate
elastic stresses in this situation, a finite element model is necessary, such as that shown in Fig.
9(b). From the finite element solution for stresses in the critical cross sections (two are
considered critical), elastic strain distributions can be directly used with the method in this paper
to compute the elastic-plastic cyclic strains. This is important in light of the fact that finite
element analyses are becoming more practical from the standpoint of everyday design, For
example, the finite element model shown in Fig. 9(b) is being implemented using a personal-
computer based finite element routine [24]. '

At the current time, no experimental data is available for direct comparison to the
predictions made in this paper (other than those presented in Fig. 8). Specimens are currently
being designed with a testing program to address the other questions raised in this study. The
current plans are to limit the experimental investigation to the relatively mild stress
concentration factor range of 1.5 to 2.0. This is due to the difficulty in experimentally measuring
strains at notch root radii much smaller than those presented in Fig. 1. A small notch radius on a
cylindrical specimen makes it difficult to physically mount a strain gage rosette. Also, the
placement of the gage within the notch is critical due to the rapidly changing strain along the
surface of the notch root, Figure 10 shows the notch surface stress distribution for a specimen
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whose stress concentration factor is 1.5. This figure reveals that a gage must be placed slightly
up the notch from the tangent point of the fillet radius in order to measure the peak strain, A
gage mounted to either side of the peak could measure a substantially lower strain, The figure
also points out the importance of gage size. The physical size of a strain gage, which can only
measure the average strain of the material it covers, could read a lower strain than the peak
value, even if mounted directly on the peak. This may partially explain the overprediction of the
strain data in Fig. 8.

The simplified version of the strain distribution technique presented in this paper is only
demonstrated for fully-reversed, constant amplitude bending loading, For this situation the
approach uses an assumption similar to the "plane sections remaining plane" assumption used to
compute the nominal stress in a smooth bar in bending [19]. The technique assumes that the
geometric shape of the strain distribution will not change significantly due to localized notch
yielding. This converts the notch strain estimation problem into a strain-controlled plasticity
problem. (Appropriate constitutive relations are used to compute stress distribution from the
assumed strain distribution and then integrated to arrive at the applied external loading
associated with the notch surface strain.) The approach presented in this paper uses the uniaxial
cyclic stress-strain curve to estimate the stress distribution from the assumed strain distribution.
The multiaxiality of the strain distribution is not considered in the current version of this
approach. Several modifications to the approach are being investigated which do account, in a
more general sense, for notch multiaxial stress and strain distribution. The technique resembles
the modular approach of Hoffman and Seeger [16], except that the multiaxial elastic-plastic
strain distribution must be approximated from the elastic strain distribution, and an appropriate
plasticity relation is applied throughout the cross section. This is integrated to ultimately find the
corresponding external loading on the component, The use of an appropriate hardening relation
can account for cyclic hardening or softening. This can be of major consequence since the cyclic
hardening or softening rate for a material is dependent on the cyclic strain amplitude which
varies throughout the cross section [see Ref. 19]. The approach can be worked into a subroutine
which interfaces directly with elastic finite element output to predict elastic-plastic strain and
stress in a section of interest.

Conclusions

A technique is presented which predicts bending strains in circumferentially notched
components., The technique assumes that the elastic distribution of multiaxial strain remains
unchanged with the onset of localized notch plasticity. The approach predicts very different
notch root strains for specimens with identical elastic stress concentration factors but differing
subsurface stress distributions. Conventional notch strain estimation routines are shown to
predict the same notch root strain for a given Ky regardless of the stress distribution. The strain
distribution approach is shown to be applicable to general engineering components whose elastic
stresses are found using finite element analysis, Tests are underway to substantiate the approach
and to direct the development of a more sophisticated version.
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Appendix

REM #4888 nnan st s ssd i s kst au SR s kNN AR NEN RN S REREEERRRAARE
REM = THIG6 PROGRAM COMPUTES THE CYCLIC NOTCH STRAIN ON A CYLINDRICAL®

REM » EPECIMEN FOR CONSTANY AMPLITUDE, FULLY REVERSED LOADING. b
REM » PREDICTIONS ARE BENT TO A FILE NAMED: "CNS.DAT", NPTS DATA =
REM ® POINTS ARE GENERATED OVER AN ENOH RANGE FROM O TO EMAX »
REM SEssuss st s s sa s iadisnssEs s snsssnabusRs i i s RNt ss s Rensss
REM

OPEN "O",#1,"CNS,DAT"

DIM Y{101),ES(101),G(101),YNORM({ 101} ,ENORM(101)

N=100 :REM THIS 1§ THE NUMBER OF STEPS FOR SIMPSON'S RULE INTEGRATION
NPTS=50

EMAX=, 008

NNsN+t

E=202375f :REM ELASTIC MODULUS

KP=1286 tREM CYCLIC STRAIN HARDENING COEFFICIENT

NPz, 2124 tREM CYCLIC S5TRAIN HARDENING EXPONENT
=.02 tREM BPECIMEN RADIUS AT NOTCH ROOY

H=R/M tREM BIMPSON'S RULE BTEPSIZE

ENOM=0 | tREM INITIALIZATION

s1a=51 sREM INITIALIZATION

MSEG=7 tREM NUMBER OF LINEAR STRAIN BEGHENTS

REM NEXT NSEG LINES ARE NORMALIZED RADIAL POSITIONS

YSEG{1)}=.5

YSEG(2)=.0

YSEG(3)=.7

YSEG{4)=.8

YSEG(5)=.9

YSEG(6)=,97

YSEG(7)=11

REM NEXT NSEG LINES ARE NORMALIZED NORMAL BENDING STRAINS

ESEG(1)=.350125

ESEG(2)=.420231

ESEG(3)=.497555

ESEG(4)=.81336

ESEG(5)=,8116

ESEG(8)=1.0776

ESEG(7)=1,38

REM NEXT 13 LINES COMPUTES NORMALIZED STRAIN DISTRIBUTION
REM FOR COMPUTING SIMPSON'S RULE INTEGRAND

Yi=0

E1=0

NTEST=1

FOR K=1 TO NN

YNORM{ K )= (K®H/R)-H/R

IF YNORM(K) > YSEG(MNTEST) THEN 480
ENORM{K)=E1+{YNORM{K}~Y1 )= {ESEG(NTEST )~E1)/{YSEG(NTEST)-Y1)
GOTO 520

Yt=YSEG(NTEST)

Et=ESEG(NTEST)

NTEST=NTEST+1

GOTO 450

NEXT K

PRINT " MOMENT NOTCH STRN HOM BTRM BYRESS"™

REM MAIN PROGRAM

REM

FOR I=1 TO NPTE tREM "I" LOOP STEPS THROUGH EMOM INCREMENTS
ENOM=ENOM+EMAX/NPTS

REM

EP=ENORM({ 101 }2ENOM :REM EP = PLASTIC SURFACE STRAINM

FOR J=1 TO NN tREHM THISE “J" LOOP COMPUTES STRAIN DISTRIBUTION
¥{J)=YNORH(J }*R

ES{J)=ENOMSENORM{ J)

NEXT J

FOR J=2 TO NN :REM THIS "J"LOOP COMPUTES STRESS DISTRIBUTION
ESS=ES(J) tREM AND SIMPSON'S RULE INTEGRAND, G(J)
F§1G=SIG/E+{SIG/KP)"{1/NP)}-ESS

FPSIG={ 1/E)+({1/KP)*{1/NP})®{1/NP)8S1G~(1/NP-1)

SIGP=SIG~FSIG/FP51G

IF ABS{SIGP~SIG) <= .01 THEN 720
S5IG=SIGP

GOTO 680 .
SIG=5IGP :REM SIG=ELASTIC-PLASTIC STRESS =(NEWTON-RAPHSON)
Q{J)=510%Y(J }xSQR{R*R-Y{J)o¥({J))
HEXT J

REM

REM SIMPSON'S RULE INTEGRATION
REH

McdeH®(Q(101)+42G(100))/3
NM=N/2-1

CFOR J=1 TO NM

NODD=22.)

NEVEN=2%J+1

M=M+4sHs{48G{NODD )+ 2*G{NEVEN)}}/3
HEXT J
H=ME 10000001 tREM APPLIED EXTERNAL BENOING MOMENT

FRINT USING "S000pd. 08  £,008008  #,080888  S8080.88" M, EP,ENOM,BIG
PRINT#1,USING "#8985.88  0.880000 & . G08083  SRUSS. 087 (M EP;ENOM;SIG
HEXT 1

CLOSE #1

END
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Finite Element Mesh, Fillet Neuber [21] Grooved Shaft
r
r
N
da/2
d/2

Kt Yy 1
2.04 r/d = 0.047 r/d =0.189
1.68 r/d = 0.096 r/d =0.328
1.53 1/d = 0.28 r/d = 0,446

Figure 1: Geometry of filleted shafts and grooved shafts.
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Figure 2: () Normalized distribution of multiaxial stress components in filleted and grooved
shaft due to bending (K1=2.04). (b) Normalized axial stress and strain distribution.
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Figure 3: (a) Normalized distribution of multiaxial stress components in filleted and grooved
shaft due to bending (Kt=1.53). (b) Normalized axial stress and strain distribution.
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Figure 4: Elastic-plastic notch strain estimates from Neuber, Glinka and strain distribution
approaches for filleted and grooved specimens, Kt=2.04,
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Figure 5: Elastic-plastic notch strain estimates from Neuber, Glinka and strain distribution

approaches for filleted and grooved specimens, Kt=1.68.
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Figure 6: Elastic-plastic notch strain estimates from Neuber, Glinka and strain distribution
approaches for filleted and grooved specimens, K=1.53.
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Figure 7: (2) Society of Automotive Engineers Fatigue Design and Evaluaton Committee
filleted shaft specimen. (b) Normalized distribution of multiaxial elastic stress in SAE
specimen [22].
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Figure 8: Elastic-plastic notch strain estimates from Neuber, Glinka and strain distribution
approaches for filleted SAE specimen compared to strain gage data.
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Figure 9: (a) Lifting hook from Crosby McKissick, Inc., Tulsa, Oklahoma. (b) Three
dimensional finite element model of lifting hook for use in ALGOR personal
computer finite element algorithm,
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Figure 10: Distribution of elastic stress along the surface of the fillet (Kt=1.53).






