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ABSTRACT The biaxial monotonic and fatigue strength properties of a woven roving glass
reinforced polyester composite have been established using flat cruciform-shaped specimens.
The results were compared with various earlier fracture criteria for anisotropic material.

A failure criterion has been proposed whose application depends only on values of the
principal elastic constants, a uniaxial strength, and the shear strength parallel to a fibre plane.
This criterion describes reasonably the failure surface for in-plane reversed fatigue loading and
in-plane monotonic loading. Tt compares well with failure surfaces obtained from available
‘distortional energy’ and tensor-based failure criteria.

Introduction

Failure criteria evolved for anisotropic materials date back to the 1930s (1),
when attempts were made to quantify the directional properties of wood. Early
failure criteria applied specifically to fibre reinforced materials considered that
the fibres carry tensile loads and the matrix transmits compressive and shear
loads. Later criteria of more general character, and based on distortional
energy (von Mises-Hencky), were developed from a theory of Hill (2) origi-
nally proposed for anisotropic metals. Development of ‘distortional energy’
criteria has progressed to the point where tensor methods are used to manipu-
late the resulting failure equation, as many as ten strength components being
required to explain the plane stress state.

In the second part of this paper one of the generalised tensor criteria, that of
Tsai and Wu (3), is considered and compared with the experimental complex
strength data of the test grp described in Part 1. Shortcomings, which are
apparent, can be explained by the fact that the actual failure surface must
circumscribe volumes with differing failure mechanisms. Observation of the
fatigue behaviour of the test grp as described in Part I has led to ideas on the
development of a failure criterion based on the interaction of normal stresses
and shear on the fibre plane.
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Elastic moduliin directions of fibre axes

Equibiaxial strengthin 1-2 plane

Strength tensors of 2nd rank

Strength tensors of 4thrank

Strength tensors of 6th rank

Strength constants

Interaction exponent

Fatigue life (cycles)

Shear strength on plane at 45 degrees to fibre axes

Shear strengths in directions of fibre axes

Strain energy to cause failure

Tensile and compressive strengths along 45 degree fibre axis
Tensile and compressive strengths along 0 degree fibre axis
Tensile and compressive strengths along 90 degree fibre axis
Interaction factors

Minimum strain range accumulation rate

Off-axis angle

Load ratio (0,/0,)

Poisson’s ratio

Poisson’s ratio in directions of fibre axes

Applied maximum principal stress

Normal stresses and shear stress in directions of fibre axes
Component of tensile stress normal to fibre

Applied and principal stresses

Failure strength

Failure strength due to shear degradation

Failure strength due to rectilinear cracking

Shear stress component along fibres

Shear stress in directions of fibre axes

Review of anisotropic failure criteria

Various relationships have been proposed to correlate the variation of strength
of anisotropic materials with multiaxiality of stress and directions of stress
relative to the principal axes of anisotropy. There are two broad approaches —
empirical and mechanistic. The empirical approach attempts to predict strength
at failure from a mathematical model. The basis for the model does not depend
on the constituent make-up of the composite and, indeed, can be the same for
macroscopically different materials. This approach takes no account of the
modes of failure. The mechanistic approach attempts to predict strength from
the properties and failure characteristics of the constituent materials and their
interrelationship with each other. This approach requires a careful study of the
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modes of failure of the composite and how the constituent materials contribute
towards strength.

Empirical criteria

The empirical approach has been developed over the past 40 years or so, and
most of the criteria can be seen to be adaptations of the quadratic ‘distortional
energy’ theory of isotropic materials. The empirical failure criteria for in-plane
uniaxial and biaxial loading are summarised in the Appendix. Theories have
evolved to make use of tensor manipulation of the rotation of fibre and load
axes, and early empirical criteria can be shown to be particular cases of the
fourth-rank tensor criterion of Tsai and Wu (3). F;, F,, Fy;, and F,, can be
ascertained from measurements of uniaxial strength, and Fg from a measure-
ment of shear strength. There are a number of combined stress states any of
which may be used to establish a value of F,. Furthermore, though the criteria
of Puppo and Evensen (4), Gol’denblat and Kopnov (5), Ashkenazi (6), and
Wu and Sheublein (7) are more intricate, they will reduce, by material
symmetry and simplification to the six strength component form of Tsai and
Wu, viz

Flgl + F202 + FHO'% =+ 2F120102 + Fzzﬂ'% + F66026 =1 (1)

Tsai and Wu detailed three specific cases as alternatives for determining Iy,
viz. use of the 45 degree off-axis uniaxial strength (4 = 0, 8 = 45 degrees), the
equibiaxial strength (A = 1) and the 45 degree shear strength (A = 1,6 = 45
degrees). Both Gol’denblat and Kopnov and Ashkenazi determined Fj, from
the uniaxial off-axis strength, but Tsai and Wu, with further emphasis from Wu
(8) showed that the determination of Fy, in this way is critical and small errors
in the assessment of the 45 degree off-axis strength can give disproportionately
large errors in Fy,. Wu-also showed that the optimum biaxial ratio for
determining F,, depends on the sign of Fy; itself and on the extent of experimen-
tal scatter. He considered the use of either the equibiaxial strength or the 45
degree shear strength to be best.

Having determined the values of the tensor components for failure of a
particular material from six separate tests as outlined above, the applicability
of the criterion can be judged by the degree to which it fits experimental data
for other loading conditions. Owen and co-workers, e.g. (9)-(11), have applied
a number of the fourth-order tensor criteria to static and fatigue data from
uniaxial off-axis and biaxial (cylinders subject to internal pressure and axial
load) experiments with various types of reinforcement.

A greater degree of fit could be expected using the criterion of Wu and
Scheublin (7) which uses sixth-order tensors. However, determination of the
tensor components requires a large number of experimental tests —sufficient in
fact to determine the ‘best-fit’ criterion by numerical methods. Tennyson ef al.
(12), using the optimum biaxial ratio to determine Fy,, compared the quadratic
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(fourth order) and cubic (sixth order) representation of the tensor polynomial
for a series of cylinders laid up at various off-axis fibre angles and subject to
internal pressure. Their experimental comparisons were of particular signifi-
cance because none of the pertinent experimental data had been used to
establish the strength components. They found that the cubic form gave a
better fit to the experimental data and that the quadratic form tended to be
conservative.

At the same time there are conflicting views which favour a simplified
approach, at least for in-plane loading, with the use of the quadratic tensor
criteria and F, specified more strictly. Narayanaswami and Adelman (13)
suggested Fj, = Ois sufficiently accurate for most engineering applications; they
came to this conclusion by applying the theory to uniaxial off-axis experimental
data. Tsai and Hahn (14) proposed establishing F, by assuming that the
two-dimensional failure boundary will be a distortion of the von Mises ellipse.
Then

Fp, = -} (Fy Fy) (2)

Suffice it to say that the strength components of the ideal failure criterion
should be capable of being evaluated from only ‘simple’ tests and material
properties. An exhaustive review of the literature published on applying,
comparing, and using the tensor-based criteria is not attempted here, but it is
intended to show that there are conflicting views. The empirical criteria are just
that; they do not purport to give any understanding or meaning to the failure
strengths, they give a fit to the available experimental data (or sometimes not)
and nothing more. A move must be made towards basing criteria on the
mechanics and mechanisms of failure. The tensor polynomial equations can
cope with changes in failure mode only by becoming mathematically more
complex, and even then they will be unable to predict or follow an abrupt
change in mode. Their development would appear to be limited.

Mechanistic criteria

The failure criteria which use a mechanistic approach have considered mainly
the micromechanisms of static and fatigue failure in unidirectional fibre
laminae and laminates; only limited study has been made of multidirectional,
woven, or random fibre lay-ups. The micro-mechanisms of lamina failure for
even the simplest unidirectional reinforcement are difficult to define explicitly.
Any of a number of modes may contribute towards failure, e.g., debonding of
fibres, matrix cracking, matrix void growth, delamination, fibre buckling, fibre
pull-out, and/or fibre failure. However, the following three modes of failure are
those that have been described most in mechanistic criteria.

(i) Fibre failure.
(if) Matrix failure.
(iii) Fibre/matrix interface breakdown.
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These may be of tensile, compressive, or shearing nature. Each mode may be
considered to contribute to failure independently, or interact together, either
linearly, as a quadratic relationship or as some complex interrelationship.

Puck and Schneider (15) recognised three stress systems contributing to
failure — longitudinal stresses, transverse stresses, and longitudinal/transverse
shear stresses (all with respect to the fibre direction). Fibre failure was dictated
by longitudinal stress alone, matrix failure by a quadratic expression involving
all three stress systems, and adhesive failure of the interface by a quadratic
involving transverse and shear stresses. The three modes were considered to act
independently to cause laminate failure, i.e., failure occurs when any one of the
three equations predicts it.

Meanwhile, Sims and Brogdon (16), Hashin and Rotem (17) and Hashin (18)
have proposed fatigue failure criteria. The latter based their theory on the two
separate modes of fibre failure and matrix failure. For the plane stress situation
both modes are described by a quadratic — the fibre mode is dictated by
longitudinal and shear stresses, the matrix mode by transverse and shear
stresses. Sims and Brogdon also took into account the fibre/matrix interface.
However, in each case the modes were modelled separately and behaved
independently. Hashin pointed out that mode separation is an idealisation,
especially at mode intersection points on the failure surface where small
domains will occur in which two modes are operative simultaneously.

Sanders ef al. (19) have suggested that interaction does occur. In multidirec-
tional laminates they observed three layer failure modes and a less significant
delamination mode. The layer modes were a strain-dependent tensile mode, a
buckling-related compressive mode, and a shear mode. Biaxial tests suggest
that interaction may be strain-level dependent. They proposed interaction
between the layer tension and layer shear modes of a quadratic form and
between the layer compression and layer shear modes of asimpler linear form.

Representation of failure surfaces

The complete failure surface for an isotropic material, such as a laminate,
subjected to in-plane loading, is three-dimensional and, strictly, should be
represented as an envelope drawn on orthogonal 0y, 03, 7y, axes. Graphical
representation is tedious and, unless adequate construction lines are presented,
the surface and position of failure points may not be readily apparent.

Ashkenazi (6) constructed the failure surface in a number of steps. Gol’den-
blat and Kopnov (5) only represented the surface as lines of constant load ratio.
Owen and Found (20) avoided three-dimensional constructions by drawing the
projection or the intersection of the failure surface onto the 7;, = 0 plane. This
form of presentation is unambiguous and is useful to compare different criteria,
but it does not show a direct representation as required by the design engineer.
Smith and Pascoe (21) have also got away from the three-dimensional view by
rotating the principal stress axes and drawing failure ellipses for fixed fibre
angles.
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In this presentation the various failure surfaces have been represented as 2-D
plots (Figs 1-4 and 6), except in one case where, as an example, the full failure
surface has been drawn (Fig. 5(a)). For zero mean stress fatigue loading failure
plots are constructed using only half of the o, fo, plane as differentiation
between tension and compression is not necessary. However, the whole o,/0,
plane is required for monotonic loading where tensile and compressive
strengths may not be equal. In the case of the 3-D plot of Fig, 5(a) lines of fixed
load ratios (+1, +0.5,0, —0.5 and — 1) and fixed fibre angles (0 and 90 degrees,
22} degrees, and 45 and 135 degrees) are shown; the same information is shown
as 2-D plots in Fig. 5(b).

Application of available strength criteria
Fatigue failure

When the criterion of Tsai and Wu is applied to fatigue testing with zero mean
loading, as for the programme described in Part [, the second rank tensors, F,
and F,, are zero. Hence equation (1) reduces to

Fiyot + 2Fp010y + Fpob + Ferly = 1 (3)

Using equation (3), the failure ellipse for fatigue of the test laminate in 10°
cycles is shown in Fig. 1. Two semi-ellipses are drawn, one with F,, derived
from the equi-biaxial state, and the other with Fyy derived from the 45 degree
shear strength. Values of the fourth rank tensors in units of (MPa)~? for 10°
cycles are

Fiy=0.145 x 1073
Fp =0.169 x 1072
Fg =25 x 1072
with
Fp=-0.042 x 1073
from the equibiaxial strength and
Fiy = -0.0025 x 1073

from the 45 degree shear strength.

The influence of a more negative F,, is to puil the surface in the direction of
increasing strength for A = +1 and conversely to flatten it for negative load
ratios. Neither the equibiaxial strength nor the 45 degree shear strength basis
results in a good fit to the experimental data in both negative and positive load
ratio quadrants, Equibiaxial strength would prove to be the better of the two,
but even so, the form of the distortional energy basis would appear to be
lacking. Using the 45 degree off-axis uniaxial strength to establish F,, would
give Fi; = —1.23 X 107%, which violates the stability condition FiF;— Fi=0
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Fig 1 Failure envelopes for fatigue failure at 10° cycles based on the tensor criterion of Tsal and Wu
(3). Drawn as 2-D plots for fibre angles 0 and 90, 22} and 1124, and 45 and 135 degrees



404 BIAXIAL AND MULTIAXIAL FATIGUE

set by Tsai and Wu, and the failure surface becomes open-ended or hyper-
boloid. Ashkenazi’s formulation does reduce to the Tsai and Wu form using 45
degree off-axis uniaxial strength data when tensile and compressive strengths
are equal.

Puppo and Evensen (4) introduced the interaction factor y = (3SHXY)Y, a
measure of the material’s strength anisotropy, into Hill’s basic theory, and the
influence of this factor on the test material’s fatigue failure ellipse (10° cycles)
for loading with the principal stresses aligned with the fibres is shown in Fig. 2.
If the interaction exponent, n, is considered to be unity, y = 0.188, and the
resulting failure surface tends towards the form of the maximum stress
rectangle. Correlation with the experimental data is poor. Butif 1 is selected to
give the best fit, i.e., n = 0.5 and, therefore, v = {433, then correlation seems
good except for the high positive load ratios.
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Fig 2 Failure envelopes for fatigue failure at 10° cycles based on the criterion of Puppo and Evensen
(4) for principal load axes aligned with the fibre weave (see Appendix 2)
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Monotonic failure

For the test laminate, the marked difference between tensile and compressive
strengths means that those criteria which do not account for such differences
are completely inadequate when applied to monotonic loading.

In Fig. 3(a)-(c), the failure ellipses according to the theories of Hoffman and
of Tsai and Wu using, firstly, the equibiaxial tensile strength, and then the 45
degree shear strength, to derive Fy, are shown. Evaluation of Fj, by Tsai and
Hahn’s simplified approach gives Fj, = —0.970 X 107 which is little different
from using Hoffman’s criteria (I;; = —0.922 X 107%). Undoubtedly, if the
theory of Puppo and Evensen (4) is modified to account for the differences in
tensile and compressive strengths it shows the best fit to the test data (see
Fig. 3(d)). However, this requires the optimum selection of the exponent 7.
Under fatigue loading the optimum value was 0.5, but for monotonic loading a
value of n = 1.67 gives the optimum fit. There is no qualitative means of fixing
n and its value is not solely dependent on the material.

QJ # DENOTES FAILURE WM THE ARMS

0, (MPal

Experimental Data
x 0" MAJOR AXIS

Experimental Dota

o 72% x 0" MAJOR AXIS
o 45° o 22%
o 45
S, ADENOTES FAILURE IN THE ARMS
$ # DENOTES FALURE
IN THE ARMS
d

300 300

Exparimental Data
x 0" MAJOR AXIS
on% .

o &5" » ’ 300
Fig 3 Failure envelopes for monotonic failure based on the theories of (a) Hoffman (22), (b) Tsai
and Wu (3) with equibiaxial tensile strength, (c) Tsai and Whu (3) with 45 degree shear strength, and
(d) Puppo and Evensen (4) (see Appendix 2)
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Consideration of the criteria

Comparison of all the available failure criteria with experimental data shows
that they are inadequate for the test laminate under consideration. The shape
of the failure surface as derived for any one criterion depends on which data are
used to establish the strength constants or tensors and the surface will show only
reasonable fit to experimental data in the quadrant which contains the applied
complex strength data. In other quadrants the correlation between the failure
theory and practice can be very poor. It was shown in Part I that different failure
mechanisms exist for different complex loading states and, unless each
mechanism can be described by the same concept, an optimum fit over the
whole failure surface may never be found. In the case of the tensor-based
theories and the carlier theories from which they were evolved all mechanisms
are described by distortional energy. Careful observation of progressive dam-
age under fatigue loading has shown that the concepts of strain energy and
maximum shear stress rather than distortional energy give best results. In the
nexi section, a theory is proposed based on the interaction of strain energy and
maximum shear stress.

A new theory

In Part [ were outlined three progressive mechanisms of fatigue failure for the
test laminate under zero mean stress cyclic loading.

(i) Rectilinear cracking, delamination, and, finally, lamina instability caus-
ing failure in compression.
(i) Shear deformation along the plane of the fibres causing breakdown of the
fibre-matrix bond.
(iii) Combined rectilinear cracking and matrix shear deformation on the fibre
plane,

When the fibre axes and the principal stress axes coincide, then only the
rectilinear cracking mechanism of failure is evident. Matrix cracking is perpen-
dicular and, to a lesser degree parallel, to the major principal stress, and even
for aload ratio of —1 there are no apparent signs of in-plane shear.

In the unique off-axis loading case of 1 = —1 with 45 and 135 degree principal
stress axes the maximum in-plane shear stress is coincident with the fibre plane
and there are no in-plane normal stresses acting on the fibres. Then the failure
mechanism is one of pure shear along the fibre plane. However, for all other
off-axis loading cases there appears to be a combined mechanism of rectilinear
cracking and matrix shear. Though each mechanism varies in extent with load
ratio, some variation is evident also when the principal in-plane stress direction
is rotated so as to vary the proportion of normal stress and in-plane shear acting
on the fibre plane.

Each mechanism or progressive mode of fatigue damage under different
biaxial loading and weave directions was recognised, in the first instance, by
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physical observation of tests at high stress levels. At low stress levels little
physical damage appears in the first cycle, but with cycling the accumulation of
rectilinear cracking or shear degradation and whitening can be identified.
However, more direct means of corroborating the failure mode are evident
from the cyclic stress/strain behaviour. The rectilinear cracking/delamination
mode of failure is characterised by the following.

(1) A distinct ‘knee’ in the tensile half cycle of the 1st cycle stress/strain loop
which disappears on subsequent loading.

(2) A linear stress/strain relationship in the compressive half cycle of the
stress/strain loop.

(3) Little or no hysteresis in the cyclic stress/strain loop even at very high
stress levels.

(4) A progressive build up in strain range in zero mean stress, constant stress
range loading, which is almost entirely confined to the tensile range until
the start of the tertiary phase. The consequence is a stress/strain loop
which is distinctly crooked.

(5) A fatigue life and cyclic stress/strain behaviour which is not affected by
frequency or rest periods at least in the frequency range 0.01 to 1 Hz.

The shear deformation mode is characterised by the following.

(1) A stress/strain curve showing a low yield point irrespective of the sign of
the principal stresses.

(2) A true yield point which does not disappear in the second or subsequent
cycles so that the stress/strain loop shows marked hysteresis.

(3) A progressive build up in principal strain range under zero mean stress
loading which accumulates equally in both the tensile and compressive
half cycles.

(4) A fatigue life and cyclic stress/strain behaviour which are markedly
dependent on cyclic frequency and rest periods in the frequency range
0.005-1 Hz.

Though a quantitative study of rectilinear cracking was not made, the
appearance and accumulation of cracks seemed to be related to strength. No
plane strain condition was tested when loading along the fibre axes, but the
nearest condition of A = +4 showed the highest fatigue strength for all loading
conditions. The lowest fatigue strength for principal stresses coincident with
the fibre axes was for A = —1. The equibiaxial loading condition, though
resulting in rectilinear cracking along both fibre axes, did not show as much
cracking as for A = —1. This is because, under the latter condition, rather than
a shear mode of failure being induced, the Poisson strain ‘works with’ the
principal strains to accelerate cracking and delamination. With the above
observations in mind, a strain energy criterion is proposed for fatigue loading
along the fibre axes. The strain energy at the stress level for a definite fatigue
life, i.e.
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2 P 2
o-3{3- (o 2]
is a constant.

The extent of matrix/fibre shear degradation is dictated by the level of shear
stress acting along the fibre plane. The stress conditions of pure shear acting
along this plane determines the matrix/fibre shear strength. A maximum shear
stress criterion is proposed. The failure strength by fibre/matrix shear for a
definite fatigue life is found from the unique case of A = —1 with 45 and 135
degree principal stress axes. This test condition is the only one which does not
involve some rectilinear cracking; it is the only test condition where no
component of normal stress acts along the fibre plane. By deduction, this stress
state must causc the lowest equivalent strength for the composite.

Failure will be due to both rectilinear cracking and fibre/matrix shear for all
off-axis loading conditions, other than the unique case of 1 = —1 with 45 and
135 degree principal stress axes. For the general loadin g case asimple quadratic
failure relationship is proposed

Lol 2

Jf JyF OF
where o is the failure strength, i.e., the amplitude or semi range of the major
principal stress. or is the major principal stress for the same loading condition,
i.c., same values of 1 and 6, which would cause failure solely by rectilinear
cracking, i.e., as given by the total strain energy theory. o, is the major
principal stress for the same loading condition which would cause failure solely
by shear along the fibre planes, i.e., would give the same shear stress on the
fibre plane as gives failure for the A = —1, 6 = 45 degrees case.

In applying the criterion to the general loading case, the applied principal
stress o and Ao must be resolved as:

(1) tensile stresses normal to the fibre plane, i.e.

o =30{(1 + ) £ (1 — 1) cos 26) (6)
(2) shear stresses along the fibres, i.e.
7 = 30(1 — 1) sin 26 (7)

where 6 is the off-axis angle. Whenever ois such that the combined influence of
the resolved components o; and 7; acting on the fibre planes exceeds the
condition set by equation (5), failure will occur.

The strain-energy/shear interaction theory applied to fatigue failure

The contribution of each mode of failure with different off-axis an gles and load
ratios is shown graphically in Fig. 4 for the particular case of fatigue failure in
10° cycles.
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Fig4 The contribution of rectilinear cracking and fibre/matrix shear degradation on the fatigue
faifure strength at 10° cycles based on the hypothesis of strain energy/shear interaction on the fibre

For equibiaxial loading no shear occurs in the fibre plane. Failure is indepen-
dent of fibre angle and is described solely by total strain energy.

Off-axis loading and decreasing A result in shear degradation along the fibre
plane, the contribution increases with increasing off-axis angle and decreasing
2. But for 2 = +§, only at high off-axis angles (37-53 degrees) does the shear
degradation mode contribute more towards failure than does rectilinear crack-
ing. However, any uniaxial loading (1 = 0) with off-axis angles between 14 and
76 degrees results in more shear degradation than rectilinear cracking, and for
the 45 degree off-axis extreme the extent of shear degradation far outweighs
that due to the cracking mode: the failure strength is calculated to be 38 MPa,
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Fig § Failure envelopes and surfaces for fatigue at 10° cycles based on strain energy/shear
interaction on the fibre plane, (a) True failure surfaces plotted on 3-D axes. (b) Representation as
failure lines on 2-D axes
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but if failure were solely due to shear degradation the strength would be 40
MPa, and if caused solely by rectilinear cracking it would be 130 MPa.

For negative load ratios, particularly A = —1, the dominance of fibre/matrix
shear is evident, and only for small off-axis angles does rectilinear cracking play
a significant part. For example, an off-axis angle of 10 degreesand A = —1 gives
a failure strength of 41 MPa, whereas, if failure were due solely to shear
degradation or rectilinear cracking, the strength would be 58 MPa: but if the
off-axis angle were reduced to 5 degrees, the failure strength would increase to
50 MPa, as the contribution of the damaging shear mode would be less; failure
solely due to shear would then give a strength of 115 MPa, and for failure
exclusively due to rectilinear cracking the strength would be 56 MPa. Figure 5
shows the failure surface for a fatigue life of 10° cycles. The agreement with the
experimental data is good, except for the case of 1 = +4 with 22§ and 1123
degree principal stress axes. 224 and 1123 asymmetric off-axis loading, in
particular for positive load ratios, shows a larger growth in fibre/matrix shear
deformation than expected. The extent of this exaggerated shear damage is
now reflected in the low experimental strength for A = +4. Pagano and Halpin
(23) showed that, under off-axis loading, end effects could influence failure,
due to restrictions caused by the grips, and Rizzo (24) felt that end constraint
could have significant effect if the uniaxial specimen length/width ratio was less
than 10. Although the unconstrained length/width ratio of the uniaxial test
specimens was only 1.13, there was no evidence of any tendency towards grip
rotation. However, the constraint caused by gripping of the biaxial cruciform
specimens was almost total due to the necessity of using bonded aluminium
reinforcement tabs of adequate length to prevent premature failure of the
arms. Unfortunately this constraint is a consequence of using small cruciform
specimens, and unless grips are employed which allow free rotation, which
restricts the tests to tensile loading, a much larger test machine in terms of both
physical size and load capacity must be used.

The strain energy/shear interaction theory applied to monotonic failure

For fatigue loading the correlation between the proposed theory and experi-
ment is good, but for monotonic loading the theory proves to be less adequate.
In applying the theory to monotonic failure the sign of loading was taken into
account for stresses normal to the fibres, whereas the matrix/fibre shear
component of strength was assumed independent of the sign of shear stress.
The monotonic failure surface is shown in Fig. 6, and generally is conservative,
though it does provide a better all-round fit to the experimental data of each
quadrant than the tensor-based theories using either equibiaxial or 45 degree
shear strengths.

The greatest discrepancy between experiment and theory was in the third
quadrant, or for compression—compression loading. In this quadrant failure
appears to tally best with a maximum stress criterion, but to make such an
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&E?  DENOTES FAILURE IN THE ARMS
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Fig 6 Failure envelopes for monotonic failure based on strain energy/shear interaction on the fibre
plane

assertion from only eight compression—compression biaxial tests is merely
speculation. These eight tests and one zero-compression fatigue test did not
make possibie any judgement on the viability of a strain energy criterion as the
only progressive damage detected prior to final collapse was delamination.
But, remembering the difficulties encountered in finding the true compressive
strength of metals, e.g. (25), the question arises as to the effect of through-
thickness grip constraint on the initiation and progression of delamination in
biaxial compression. Certainly, under uniaxial compressive loading, wedge-
type grips result in greater strengths than if compression is applied directly to
the ends of the specimen through flat platens (26).

Prediction of the stress/strain ‘knee’ and off-axis yield

Formerly, the classical theories for complex loading of metals were concerned
with predicting yield rather than ultimate failure. Deviation from stress/strain
linearity in the woven roving test grp can be through either the ‘knee’ or a true
yield point; each occurs due to different mechanisms, so that no single
conventional ‘yield’ theory will predict both the stress level of the ‘knee’ and the
off-axis yield. However, the proposed strain energy/shear theory derives two
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strengths independently: one is based on rectilinear cracking, which in itself is
acause of the tensile ‘knee’ when the principal stresses are aligned with the fibre
axes, and the other strength is based on shear of the matrix, which is a yield
phenomenon. If the two strengths are considered separately and the interaction
quadratic is not applied, then the lower of the two will predict the limit of
stress/strain proportionality. It must be borne in mind that rectilinear cracking
and the ‘knee’ never occur if the normal stress is compressive and then the strain
energy based strength is ignored.

Predictions of the ‘knee’ and yield point for load ratios of —1 (shear) to +1
(equibiaxial) are shown in Fig. 7 for principal stress axes of 0 and 90, 22§ and
1123, and 45 and 135 degrees. The major principal stress in each case is tensile.

When 4 is positive and the principal stress axes are aligned with the fibres, the
‘knee’ appears along both minor and major load axes, and if A is less than +4 a
‘knee’ will in fact occur along the minor principal axes before one appears on
the major axis. Off-axis loading with a high positive load ratio still shows a
‘knee’, but as the off-axis angle increases, so the load ratio to cause a ‘knee’
becomes more positive. For 224 and 1124 degree off-axis loading a ‘knee’ should
occur along both fibre axes when A is greater than 0.44, and for 45 and 135
degree loading the yield changes to a ‘knee’ at 2 = 0.59. The change from a
‘knee’ to a yield point is not distinct because the two phenomena will inter-
mingle (sce, e.g., Fig. 4(c) of Part I) for 2 = +4 and 45 and 135 degree axes).

Conclusions

A methodical study of the progressive failure mechanisms in a woven roving
grp has led to the proposal of a new theory based on the interaction of
rectilinear cracking and shear of the fibre/matrix interface. The former is
described by consideration of strain energy due to stresses normal to the fibres,
and the latter by the maximum shear aligned with the fibre-plane. Failure is
represented by a simple quadratic expression. The theory is seen to describe
reasonably the failure surface of the test grp under zero mean-stress fatigue
loading and, less reasonably, monotonic loading. It also proved suitable for
predicting the change in stress level of the ‘knee” and the yield point under
biaxial loading.

Appendix 1  Anisotropic failure criteria for application to laminate materials
of orthogonal symmetry

(1) Criteria which do not account for differences in tensile and compressive
strengths:

(a) Hill 2)

2 2 2
ay (1 ., 1 _ 1 % I\ _
(X) (Xz + Y2 22)0102 + (Y + S 1
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(b)  Norris and McKinnon (27)
2 2 2
Gy ) Ty
20 (2) + {22 =
(&)« () (%) -
() Norris (28)
2
a1y _ 09
(&) -5+
(d}y  Azziand Tsai (29)
2 2 2
o 010 03 T12
¥ - o+ == e =
(&) 5 (5] (9] =
(e} Fischer (30)
2
a .09
91y _ gl919
(&) - (%)
where

K = Ei(d + vy) + E(1 + vpy)
2H{EE( + vy)(1 + Vzl)}m

(2) Criteria which do account for differences in tensile and compressive
strengths and also require complex stress data:

(f) Hoffiman (22)

X - X Y - Y U% 0103 0%
2 2o + oo + - +
( XX )"1 ( % )UZ Xx' XX Yy
N
s

(g) Marin (31)

X -Xx) o (L_ Y
XX’ ! Yy Xx')°

{ 2 XX -S(X'-X-X'XIY'+ Y)]
+ - 010,

XX' XXx's?
2 2
gy g5
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XX’ +XX' 1

(h)  Franklin (32)
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K, acts as a distorting factor for each quadrant of the failure
boundary. For example the equibiaxial tension case gives

- XX’ 1 X'x] x'x
= e — ——— L Y’ —_ —_ —_——
k=1 vyt EQ {(X X+ ¥) Y'Y] EQ?

(3) Criteria which are presented in tensorial form, and generally are adapta-
ble to take optimum or experimentally available complex stress data

(i)  Gol'denblat and Kopnov (5
1o 1Yo (1 13g
X X')/)1 Y Y'/)2
1 1 Vo, \? 1 1 Vo, \2
T2t
+

= %%Gﬂ%fw;+4f}

(i) Ashkenazi (6)
2 2 2
a % 4 1 11 T .
(X) +(?) +(W2 XT Ty T )t lg) =1
(k) Tsaiand Wu (3)

A generalised 4th order tensor criterion

Flﬂ + FUZ 4 Fﬁa + FIU% + 2F1 logte)) + Fzzo% + F@ﬁaé =1
1 2 1 1 2

where
L O L B s
=% ¥ BREy-vn F st 5
1 1 1
u= gy = o 5=

Fyp can be determined from a range of strengths, e.g., (i) from the
equibiaxial tensile strength, EQ

-1 ~Eo{L_1 1 1
F12_2EQ2{1 EQ(X x 'y Y')

~ g L __1_
RN



BIAXIAL FATIGUE OF A GLASS-FIBRE REINFORCED COMPOSITE. Part il 417

(i) from the 45 degree off-axis uniaxial strength, W and the shear
strength, §

N

= _W-Q-
w21 1 1
| ——— + B
i (et )
or (iii) from the shear strength at 45 degrees to the orthogonal axes,
S

1 1 1 1 1
2=~ il =Sl -+ 5 — o7
Fa=—357, { “5(}( XY Y')
1 1
- 52 o
S4s (XX' YY)}
()  Wuand Scheublein (7)
A generalised 6th order tension criterion
Flol + anz + FHU% + FZZG% -+ F@SU% + Flzolaz
+ Fippoloy + Fin0} + Fiee010¢ + Faeg00g = 1
The first five components are the same as in the Tsai and Wu
criterion above, but the remaining five must be obtained by

iteration.
(m) Puppo and Evensen (4)
1st criterion
2 2 2
a, 010, gy T
—2 — —_1 —_— + —_. =]
(5 - (55 A% (9] -
2nd criterion
2 2 2
o o o T
(%) -5+ () + () -

where the interaction factor,

_ 332 H
EA\XY

and the exponent, n, depends on the material.
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(1) Application to monotonic failure

Theory of Puppo and Evensen (see Fig. 2)
Ist criterion
2 2 2
Uy 030, g T12
=Ly - + v 22) 4 {12
(3 {5 o ()
2nd criterion

{6 o) 5]+

where the interaction factor

_ 352 n
YelxY

and the exponent n depends on the material. For n =

strength tensors

I

If
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Ist criterion

2nd criferion

1 .
Fy = 5 = 01452 10 3
Fy = —}l,} =0.3172 x 104

e —4
Fp= ——L_ =0,1586 x 10
| 777 86

R -
Fy = =Ly = 02730 x 104

1 -
Fzz = ? = 0,1687 x 10 3

1
Fip = = = -0.1365 x 10*
12 ZXZ

Best fit is found for n = 0.5, then y = 0.433 gives strength tensors

Ist criterion

2nd criterion

Fp, = 0,1452 x 1073
Fy; = 0,7305 x 107
Fp, = (,3652 x 1079

F); = 0.6287 x 107*
Fy; = 0.1687 x 1073
Fi; = 0.3144 x 1074

{2) Application to fatigue failure
Theory of Hoffiman (see Fig. 3)

1 1 1 1 a3
(f F)"l*(? ?)02+XX’

1, y = 0.188, giving
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—0.8483 x 107

F=

F, = —0.6527 x 107
Fyy = 0.1844 x 1074
Fzz = (.2040 X 1074
F, = —0.9220 x 10°*

Feg = 0.1452 x 107

Tsai and Wu: Fy, from equibiaxial tension (see Fig. 3)

FIU‘ + Fzﬂ'z + FHO'% + 2F120102 + FzzU% + F, 0% =1
66

=Ll _ _os -3
Fi= o = 5 = —08183 x 10
F=L .1 = 06527 x 107
Ty v '

1
Fy = L = 0.1844 x 10
1 Xf

Fyy = _%7 = 0.2040 x 107

'

Fog = 313 = 01452 x 107

1 1111 1
Fo=-Lt licpofl- i o2 L) po - )= 0 -5
2 2EQ"{ Q(X XY Y') Q(Xx YY')} 0.5999 x 10

where EQ is the equibiaxial tensile strength.

T'sai and Wu: Fy; from 45 degree shear (see Fig. 3)
FIUI + FQO'Q + FHU% + 2F120'102 + Fzza% + FGGO% =]
Strength tensors Fy, Fy, Fy, Fp,, and Fgg same as above.
1 1 1 1 1 1 1
=] =8|l ===+ =5 -Sksgo—+
Fa = =357, {1 45(}( XY Y’) %XX' YY' )}
= 0.3617 x 107°

where Sy is the shear strength along a plane at 45 degrees to the fibres.

Puppo and Evensen (see Fig. 3)

¥
Failure
quadrant n=/{ = 1.67
Ist 0.338 0.163
2nd 0.390 0.208
Ird 0.475 0.289

4th 0.412 0.227
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