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According to our experimental observation, in case of self-similar
crack propagation in cross-ply laminates (with about one third of fibers
laid in 30° direction) there are some '"small terraces” before steady
propagation of main crack in the load-crack opening displacement curve
(P-A). And on the crack propagation pictures of cross-ply laminates a
triangular damage area is always observed in front of the main crack. I+t
means that in front of the main crack there exist several longitudinal
branch cracks with different length forming a triangular area, which
yields accordingly some terraces in the P-A curve. After the appearance of
the first branch crack, both the transverse normal stress oy and shear
stress Tyxy on the branch crack surface are nullified, so the peak stresses
move forward, and thus producing the second and more branch cracks. Since
the length of cracks are reduced one by one;as a result a somewhat
triangular damage area is formed.

By analogy to the fracture
- model of the metals where a plas-
outside area ~~.._ . . ’ 3
) tic zone is always formed in

N X
branch cracks
: common boundary front of the crack tip, we tried
nmer/;nm_1
i/ area

to insert a triangular damage

damage zone area instead for the case of

“4L* f composite laminates. (Fig. 1).
b

The stress field and displace-

main crack

NM\“\ // . P
Qe ments outside the damage area
are calculated according to the
p— ; = 8 anisotropic fracture formula.
Fig. 1 A fracture mechanical model. ° ! vt

Since the stress analysis inside
the damage area is quite different from that of plastic zone in metal,
present paper investigates the mechanism of the multi-branch cracks and
the stress relaxation in the fiber immediatly ahead of the crack tip, and

proposes a method for evaluating the related Ko for composite material.

III. COMPUTING METHOD

It is extremely difficult to solve a multi~boundary problem of a body

with multi-cracks by analytical method. P.E. Chen [6] has studied such

load~bearing capacity would

be higher than that of one cérack. In the present paper, similar to that
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used in reference [7] the analytical-finite element method is used. The
cracked body is divided into two regions~-inner area and outside area. We
first obtain the analytical solution in the outside area in which the com-
posite laminates is treated as the orthotropic material. The displacements

along the boundary common to both regions ave thus obtained from this

analytical solution. Then the finite element method is used for solution
in inner area. The method, however, is different from that of reference [7]
The displacement for crack problems of orthotropic material can be

expressed as

: - (2r.% o RS JURNE 8 |
u(r,8) = KI(TT) Re% ul,ﬂg[ule(anG + u,singd) u,P3(cosO+uysing) }5
v(2,0) = K (ZE)PRed —L [u1q,(coss + ysing)? ~ 1uq;(cosor sine)?7 |

r, Y7 lul' 2~ul 1l Yy Mzd31{COS 351 j

where Py, P,, q1, q, are the functions of elastic constants.

Py = ajjui + azs — aigm

P2 = allug + 2y — AdigHy

4
9 = (a;2uf + a,, — assuy)

-1 2 .
Qe = —(a12u3 + a,, = azgHy)
Ha
Hislos and.al, ;; are the roots of the following characteristic equation.
[ B : iy ) -
arnid’ = 2a160® + (2212 + aes)u? — 2aseu + Ay, = O

a;. are the elements of flexibility matrix [al, {e} = [a] {o}. The displa-~
cements obtained on common boundary are employed for solution of inner
area as prescribed displacement boundary condition. Some supporting rods
with certain stiffness are introduced. Then we can prescribe with aid of
the above mentioned displacements the effective node forces on the boundary
nodes. This makes it possible to assemble the stiffness matrix of boundary
element on to total stiffness matrix of inner area and solve the equations.
The rectangle element is used here to solve the equations for inner area.
In order to determine the element size on interface, and to evaluate
the elastic modulus of both interface element and damage area after inter-
face debonding, we first calculated a simple model in which there is a

main crack with a branch crack only. And we choose the width of interface

1091



slements between two Fibers be one tenth of the fiber width. After inter-

face debonding the modulus By, Ey, ny in the interface elements arve all

given a reduction by the order of three magnitudes. The longitudinal

modulus EV in the damage aresa between two branch cracks are kept unchanged,
while Ey, G are reduced by threse magnitudes as well. The finite =lement

Xy
B4
model used for calculating in inner ares has 160 rectangle elements (187

nodez). The elements introduced to simulate the boundary between fibers are

allowed up to 5 branch cracks.
It should be pointed out that when we evaluate the displacemer

boundary of inner~outside areas, the displacement increment caused by the

increase of flexibility in specimen has been ignored. It means that the

is assumed, so that the method is suitable

Yinear fracture hypothesis

the where the damage area is relatively small. If the dimension of

v large the nonlinear effect should be con-~

sidered.
IV. RESULTS AND DISCUSSION

The fracture model and computing method mentioned above were used for

calculating the displacement field of branch cracks and the fiber stresses

the cracks. The data used for computation is as follows:

in front of

.52 x10% kg/mm?, via = vay = 0.13, G312 = 0.3x10°% kg/mn?, the

field obtained for the case 1n which there are five

chown in Fig. 2. The displace~

ment of a branch crack thus obtained is similar to that of the reference [8]

the variation of stresses g, in the

first fiber in front of crack
T e along the x and y direction, res-
pectively. If there is only a

o a3 x>0 and

main crack then o

y+0, i.e. the stress is singular
at that peint. However once the

k appears the originally

branch

singular stress turns to be a
g

te valus and keeps relative

crack with uniform value along the y direc-

tion. From Fig. 3 it is evident
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that the uniform stress area increases as the branch crack is getting longer,
meanwhile the magnitude of this uniform stress decreases. From Fig. 4 we
see that as the length and number of the branch cracks increases and the

damage area of material between the branch cracks extends, the stress Oy is

|
| X =
b l /\/

S
[ 5o, kg /mm?
0 v o 24
1.0 vy
Fig. 8 The curve of ame Fig. 4 The curve of oy=-X

getting smaller and finally approaching to a steady value. We refer it as
critical relaxation stress.
If the plane elastic modul Eg ., Eyy’ sy and ny, the longitudinal

S 0o and the width b of a single fiber are given,

/0
2

ultimate tensile str

the ecritical relaxation stress under the action of X; = 1.0 kg/mmg/ can
be calculated. For the material constants computed given in this paper,
the critical relexation stress is 0.48 kg/mm?. So when the critical re-
laxation stress reaches the tensile strength OyB (for material given in
this paper OVB = 25-30 kg/mm?), we obta%n the critical value of K;, i.e.
he fracture toughness K, = 50-60 kg/mmj/z. This value is in agreement with

o

the experimental results. This is the method to evaluate K, for the cross-

o, obtained by the "debonding

ply laminate by relaxation value of

damage area" fracture model.
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