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ABSTRACT

ihe fully plastic solution for a central crack in an infinite plate
biect to a combined loading of mode I and IT is given using the modified
wvey principles. Based on the soluticn an elastic-plastic mixed mode
cture criterion is suggested. Numerical results for the inclined crack
w that the effect of the plastic deformation should be considered in the
cotigation of the mixed mode fracture criterion. The numerical results

the critical stress are compared with the available experimental data.

spreement is rather good.
THEORETICAL BACKGEOUND

The modified energy principles derived in [1] will be used to obtain

tic solution for the combined loading of mode I and II. Let

- and u® denote the stresses, strains and displacements associated with
uniform field of the loaded body in the absence of the crack. Denote
siditional quantities by a tilde so that the total quantities in the

& of a crack are given by

W modified principle of potential energy. If the additional displace-
1 1

¢ decay faster than r? as 1=, where v = (x.x:)? among all admissibl
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exact solutions U minimize ®
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where v ig infini { 3
s the infinite Teglon surrounding the crack, s is the crack sup-

face, n is the is the stress deviator and ¢ is the effective stress defined by

Unit normal to s pointing into v, and w(e) is the strain enw
eYgy density )

(9)

Yo
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wig) = Uiidaij (3)

an ctive strain defined by
Owing to incom I LETS .
g thcompressibility, a stream function could be used to give the
™ 5w . . e =Ll b - . .
additional displacements as ; €y = (10)
a o= 5= g . sod & satisfy the relation (7).
1 Vigs UQ“M""’L (%) _ : e
€
The function ig + R ey . - wig) = "o, . de (11
TCHlON 1s represented as a linear sum of admissible functions in the () g 2 ()
form
FULLY PLASTIC
k .
= {l
b et (s)
1=] Congider an infinite g a through~the-thickness

The integrals subjected to a general plane loading, as indicated in Fig.1l. The remote

il

over the body in (2) are evaluated using a mapping
: bping
Migue togethep with numer

oo @© . o - 2 s L)
Lress components are ¢ = 5, ( =T, Tyn = Q and plane strain condition

1 " ical integration in the mapping plane. The 22 !
physical plane ¢ soged P . : = () is assumed.
phy 1l plane investigated here is mapped into the unit circle in the 82 OF d5 assumed
g = o ~ir = P . &5 ) - © . w &
t-plane using the conformal mapping Ffunction For the mode I problem Opnn = 8y 044 F Ts Oyn = 0, the stream function

in [1,2] is

. -1
z2 = w(g) = T+ ) (6)

B Pud - 8 ¢ S A% r . i ”
£+in ule s A8 shewn in Fig, 2. The polar coor-

r the mode stream func-

MAPPIng plane are taken as the independent variables

The numer

. k+1 L .
incompressible 2(kwi}$~ijmﬂ§{~1)K'¢u+%[(j~1}iij)«ﬂik~l)gix

“ezud {13)

consistence with the symmetry cond
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Polu,e) = g {u,~4), wg'¢{u,¢) =
2 2 2,

that &, and 1, ave well

1 2
esentation (13} leads to the corvect

also

for n = 1, the




uland u2 as up>1

For the general case, S # 0, Q # 0and T # 0, the stream function is
taken to be

W(Usq)) = ‘L‘l(u’¢)+4/2(”,¢) (15)

In mixed mode, we use J-integral as a measure of the strength of
singularity at the cpack tip. The definition of J is the energy release rate
when the crack extends along the crack plane. But generally speaking, under
the combined loading, the crack will extend not along the crack plane. J~
integral is not the true energy release rate. It is only a measure of the
strength of singularity. For linear elastic case, J is related to the elas~

tic stress intensity factors by

2
o d=vT 2 2
J o= "‘*E—- {K]‘.i'KII) (15)

For the infinite plate with crack of length 2a, the crack length is the

only length quantity, and by dimensional considerations J and ¢ . have the
following relation: "
i
JoE - Thadn 1%

For any admissible additional displacement field U, o(@)2¢ . , and thus an
o = min )

estimate of J using

18 necessarily a lower bound. Equation (18) will be used to obtain the

numberical estimates of J.

In mixed mode, the parameter M®, which was introduced in [3] by Shih
- e =43

18 used here. The definition of M® is

o
ME = Zarctanf6Q£Elgimw (49
ki & \ (19)
o, (6=0)
With this definition, M® ranges from 0 to 1, with M® = 0 for mode II problem
and ¥% = 1 for mode I problem. h

The normalized J is given hy

34

hin, M®) = *;“i““' (20)

UeEZa

diere o and e: are the remote effective stress and effective strain respec-
¢ively, Numerical results of h(n, M®) for % = 0, 0.3, 0.7, 1.0 and n = 1, 2,
'+ %, 7, 10 are given in Table 1 and Fig.3. Because the stream function
sepresentation leads to the correct solutions of uy and u, as w1l for n = 1y
iy a few parameters are necessary to give J to the accuracy of three
significant figures. The present results for linear elastic case (n = 1)
#ce compared with the analytical results, which are also included in Table

tt was found for all M®, the difference is less than 0.1%. For n # 1, on
“he basls of numerical experimentation with different N, M, N1 and Mi’ the

twulations with N=3, M=3, N,=3, Mq=4 (for M®=0.3, 0.7), N=0, M=0, Nq=h,

Hy=5 {for M®=0), give results for J in Table 1 which are felt to be lower by

#amount less than 5%. As indicated in [1], the upper and lower bounds of J
re very close for mode I problem. So it is expected that the numerical

results in Table 1 are highly accurate, although here we only calculated the

Loewaer bound.

Table 1 h(n M%) for plame strain crack
[ n=l  n=2 n=3 n=h n=5 n=7 n=10 n=13%
1.0 3.142 4,470 5511 6.390 7.152 8.u421 9.870 3.1u42
0.7 1.942 2,731 3.291 3.714 4,042 4,508 4,940 1.3u1
0.3 0.9286 1.31n4 1.599 1.825 2.006 2+272 2.529 0.9290
Q 0.7850 1.120 1.387 1.611 1.804L 2,112 2.439 0,7854

% analytical results

Contours for constant effective strain €e=1.5, when the remote effec-
vive strain is unity, are shown in Fig.4 for different M€ and n. The plots
leaely show the strain concentration is relatively smaller in mode IT(M®=0)
cobiem and M®=0.3 at a given distance from the crack tip than that in mode
problem, especilly for large n. It may explain why materials have a higher

cacture toughness in mode IT than in mode 1.
ELASTIC~-PLASTIC MIXED MODE FRACTURE CRITERION

As an engineering approach we assume that in mixed mode the crack will

tiate when J-integral approaches its critical value
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w . T e 3 . 3
€ use the estimation scheme proposed by Shih and Hu‘tchinson[LL’5'J to
calculate the J-

tegral in the elastic~plastic regime.
J o= 40 y
. M (22)

where J, is the asti i i
e % the elastic contribu and is abtained ¥ & i

- ibution and Jp 1s abtained from fully plastic
solution,

Now we conside; i

- “onslder an inclined crack in sn iees s
Beiiten: am dngle B ro o o0 30 ‘i crack in an infinjite plate. The crack
. X v Lo A remote uniform Stress . Referring {1
corresponds to the fol i " croAererring to Figol it
“he following loading condition:

8 = osin?g, @ = UsinBeosB, T = gcos<p (23}

g
and M® = = % gl o T =
;ﬁ(B 0 radians). The nermalized J for the inclined epack is given

in Fig.5 for n=1. 5 S jsi ;
i T n=l, 2, 3, 4, 5, 7, 10. Using the estimation scheme (22) these
o 28e
fully pla s SOLUTt Tema - .
Y plastic solutions can be used to evaluate the cpitical stress accord-

ing to the cpitep: g
g De criterion {(21). Let ccr(ﬁ> denote the critical stress at initig-

88

tion of crack growth and y, the stress ratio

w .
‘{g& versus the cpack angle
and 7. It is assumed that

curves show that the crie-

plastic deformation should

e the mixed mode fracture criterion,
the numerical result of the ¢

r

th& ’i”"c’i; ahl i e s § 5 2 €
available exXperimental data obtained by Xu et al L and Pook Th

3 o i 3 e

materials used we Y12-CS aluming g E /
at als used weg LY12-C3 aluminium alloy (07:3?.5kg/mm2,7 =45 Skg /mm?
. ¢ g/ mu o T 3KE /M
D=8} by X et g1, L8 TDEO50 (549 o ini .
& y X, et al. DID5050 (54% 7n aluminium alloy, 0ﬁ=3¥k9/nm2
s Oy g

3
" b0 7
0 =37kg/mm<) by Pmoki"

d

s Tthe n value

T DTDE0S0 is not given in [71, as it

S a fairly ducts aterial with | ]
Y duetile material with low work wardening vate, 50 we use n=1i0

e

]

or the calculati, The results : 1 i i
Aation. The results are given in Fig.8, The dgreement between

=

X

wumerical results and experiment iz rather gooc
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FULLY PLASTIC ANALYSIS

THROUGH~THE-THICKNESS CRACK IN BIAXTAL STRESS FIELD Consider an infinite plate, containing a through~the-thickness crack,
#hich i1s subjected to a biaxial stress field. One of the stress components

is acting perpendicular to the crack and another component T parallel

He Mingyuan ({fJ885%) to the crack. Within the context of small strain theory, we consider an
Institute of Mechanics, Academia Sinica, China incompressibel power-law solid characterized in simple tension by
€ g.n
£ oL 1
” (UO} (1)
ABSTRACT

2re 09 is the yield stress in simple ‘tension ey = Eog, coefficient o

The effects of biaxial stress ratio on the crack tip strain field and exponent n are material constants. Generalization of Eq. 1 to multiaxial
J Integral have been evaluated numerically for both plane strain and plane “ress state using J, deformation theory gives

stress cases in an infinite body of power-law material using modified energy

Q..
principles. These fully plastic solutions may also be applied to power~law = gu(gf)n L 13 (2)
creep matervials. The elastic-plastic solution of J integral for the crack
in biaxial stress field was also obtained using the simplified analytical wh Sij and 0, {= NM))TE S3 } are the stress deviator and affective
method. Sets of limit curves have been prepared to evaluate the effects of ‘fress, respectively.
both biaxial stress ratio and applied stress level on J. It is shown that The normalized J for plane stress and plane strain arve given by
the effect of biaxial stress state on J is negligible below the limit
curves. The results are in good agreement with the available fatigue crack hi(n,T/S) = g oy for plane stress (3)
propagation data in biaxial fatigue tests. qoogoa(ﬁﬁ)
; g1 SRS, S . .
INTRODUCTION o aogea %%7?:“ or plate. SEnm )
Fracture mechanics hniques are currently used to predict safe life : and h, are calecula by modified energy principles developed in [1]

of aircraft and other structural components. Because multiaxial loading ol case, a stress function isused to generate

is usually encounter ress field. The upper bound of J integral is
y 3

ad in structural components, it is important to evalu- wdid

ate and quantify multiaxial effects. However, the biaxial stress effect on i

d by modified principle of complementary potential energy. For the
3 £ r Y F g

the crack tip stress field has not been successfully and systematically iane strain case, a stream function is used to give the additional dis-
studied so far, probably because of difficulties in ela astic-plastic analy- wements. The lower bound of J integral is obtained by modified principle
sis for various kind of materials. ! potential energy. Th have been explained in detail in [21.

The purpose of the pregent investigation is to evaluate systematically Plots of the normalized J versus the biaxial astress ratio T/S are

the effect of +he

stress on the J-integral of a through-the-thick- “ven in Figs. 1 and 2. These curves show the effect of biaxial stress

ness ocrack, based on modified energy prin '1ple. + T/S on J integral in fully plastic condition Ffor different n. It is
fed that the effects of biaxial stress ratio on J ave quite different for
plane strain and plane stress cases.
These solutions are applicable to the situations where the cracked

i a3

3%




configurations apre completely yielded, i.e., the plastic strains are large

enough compared to the elastic strains everywhere in the body . The solu-
tion may also be applied to power-law creeping materials under steady-
state creep conditions. Most crack problems of practical intevest are in

the elastic-plastic region, in this range an estimation scheme was used.

ELASTIC~PLASTIC ANALYSIS

The stress-strain relation in simple tension is given by the Ramberg~
Osgood Formuls

) U ¢ \n
= e g (Ly (5)
£ g Tg

: . s 3,4 .
An estimation scheme developed by Shih and Hutchlnson[a’ 1 was used for J,

This formula . combines the linear ela stic and the fully plastic contribu~

tions and ig of the Fform

(8)

where Jg is the elastic contribution which is independent of the component
T and Jp is given. by fully plastic solution. Formula (8) has heen found

to be in good agreement with finite element calculations for the complete

range of elastic-plastic deformation and material hardening properties for

i
a number of crack configurations[JJ.

For the through-the~thickness crack in a biazial stress field in plane

ress case, from (3) and (6), J integral is given by

n+1
J = Jataogeghy(n, T/“)(

where hy(n,T/8) is the normalized Jp of fully plastic solution, which is

given in Fig. 1. Then

o 14 uhl(nT/s)bgi)nwl
s ™ Tg

Yor plane stress case, plots of J/J, as function of T/S for different
8/0y and n=7v 510, =1 are given in Fig. 3. Similarly, plots of J/J3e for plane

strain case (n=7, o=1) are given in Fig.4., These curves show the effects
g g

of both biaxi and applied stress level s/cO for different

44

<

wrves have been

Fect of biaxial stress state on .J,

Finally, for convenience of application, sets of the so @

o
—
=
[+
L
e
[T
=
e

t
prepared based on I/ curves to evaluate the effects of
ratic T/S and applied stress level S/g9 on J £

8.5 and 10. Bel

't iz given in

Fig. 5 for n=7, ow the

curves the effect of biaxial stress state on J is less then 5%, op

w

Above these curves J is

ring point of view.
stress bia;iality.

shown in Fig. 5 may be used for evalu ating the

on the fatigue crack propagation rate (FCPR)

L as on J. If a set of data (AS/0y, T/A8), where AS is the range of

S in a fatigue cycle, is located below the limit curve the

then on the FCPR is negligible. The
£ rd
8ts, conducted by 26?

s Joghi et al. and Truchon et

also included in Fig. 5. The solid points are the data of

fect of biaxial stress state on the FepPR

e of tests which indicate that the

is ected by biaxial stress state. Most of the solid points are
ated below the limit curves and all the squares are located above the
q

shows that the experimental data are consist ent with the

luation by the limit curves.
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