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Abstract: Effect of highly heterogeneous fracture properties on tensile penny-shape planar crack propagation
governed by Irwin’s criterion is investigated numericallyby taking into account the large crack front deforma-
tions induced by the high toughness contrasts. To compute the variations of stress intensity factor (SIF) along
the crack front arising from its progressive deformation, perturbation approach based on Bueckner-Rice weight
function theory is used iteratively. Effective fracture toughness is obtained from the local toughness map for a
few examples. It is shown that when Irwin’s criterion is satisfied all along the crack front, the effective tough-
ness is equal to the mean value of the local ones along the crack front. This value depends on the shape of the
front, and so is different from the total mean value of the toughness in the plane. In the examples studied here,
the weak toughness zones are favored by the crack front deformations, so that the effective toughness is lower
than its spatial average.
Keywords: Tensile planar crack; Heterogeneous medium; Effective failure properties; Perturbation method;
Linear elastic fracture mechanics.

Quantifying the effective fracture properties of a planar crack propagating in a heterogeneous material
is a key issue in material science. Since the crack propagation results from the interplay of local mate-
rial properties with long range elastic interactions, the problem is not trivial and can not, in general, be
reduced to take the spatial mean value of the fracture properties. Two regimes shall be distinguished
[1]: For slightly fluctuating maps of local toughness, the elasticity of the crack front dominates over
the destabilizing effects of heterogeneities, and the motion of the front is smooth (weak pinning). For
materials with stronger heterogeneities with larger gradient of toughness, the crack front can jump
abruptly from one equilibrium position to the other (strongpinning) [3]. In the weak pinning regime,
it has been shown in the limit of a first order approach that theeffective macroscopic toughness can be
obtained by averaging the local toughnesses, contrary to the strong pinning case where the effective
macroscopic toughness islarger than the average local toughness [1].

Here, we address these questions in the context of highly heterogeneous local fields of toughness
for which the first order approach can not be used. In particular, we take into account the effect of
large crack front deformations induced by high toughness contrasts, and investigate the relationship
between local toughness map and macroscopic effective toughness. In this paper, we will limit our
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study to the weak pinning quasistatic regime. We consider the case of a circular embedded crack
propagating under remote mode I loading in an axisymmetric toughness map (see § 1). We solve the
problem by using an incremental method [4, 5], based on Rice’s perturbation approach [6, 7]. This
method is presented in § 2 and then applied in § 3 to the resolution of our problem.

1 Problem definition
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Figure 1: A tensile planar crack in an infinite body under uniform stressσ∞

Consider a planar penny shape crackF of initial radiusa0, embedded in an infinite isotropic elastic
medium with heterogeneous fracture toughness properties and loaded in pure mode I through some
uniform remote stress applied at infinityσ∞ (see Fig. 1). We assume a quasistatic propagation of the
crack front, so that the crack advance at a pointM of the front is governed by Irwin’s criterion:

{
K(M) < Kc(M) : no crack advance
K(M) = Kc(M) : possible crack advance,

(1)

whereK(M) is the SIF andKc(M) the toughness at pointM . Let us denoteKc the average material
toughness,κc(= ∆Kc/Kc) its relative contrast andη(M) the toughness fluctuations. With these
notations, we have:

Kc(M) = Kc [1 + κcη(M)] (2)

We suppose that the remote loadingσ∞ adapts in order to stay in the quasistatic regime and to ensure
crack propagation at least, on some part of the front. This implies that at each moment:

max
M∈F

K(M)

Kc(M)
= 1 (3)

Under the assumption of quasistatic propagation, the problem is to find, for a given toughness map
Kc(M), the successive positions of the crack front and the corresponding loadingσ∞. From them,
one can obtain the SIF along the crack front and consequentlyits mean value. In the homogeneous
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case (κc = 0), the problem can be solved analytically. One has at each momentK = Kc all along the
front, the successive positions of the crack front are circles of radiusa and the corresponding loading
follows σ∞ = Kc

2

√
π
a
. In the heterogeneous case, the crack front deforms. In an homogenization

process, we shall replace it by an equivalent circular crackof

• radiusam given by the mean value of the crack extensiona:

am =
1

L

∫

F
a(M(s))ds (4)

• SIFKm given by the mean value ofK:

Km =
1

L

∫

F
K(M(s))ds (5)

wheres is the curvilinear abscissa andL is total length of the crack front.
We will see in the following that in the cases investigated here,Km tends to a constant stationary value
after some transient propagation regime. As a result, this stationary value will be used to define the
macroscopic effective toughnessKeq

c of the heterogeneous media studied here. Alternatives would
have been to defineKeq

c as the maximum value ofKm during crack propagation or its mean value
during propagation. However, we would like to define an effective toughness as a quantity that does
not depend of the initial geometrical configuration of the crack, so the value ofKm in the stationary
regime seems the most appropriate definition.
The aim of the paper is to discuss the influence of the toughness mapKc(M) on this effective tough-
ness. In this paper, we consider it periodical and axisymmetric given by:

Kc(M) = Kc [1 + κc cos(kθ(M))] whereθ(M) denotes the polar angle ofM, (6)

and discuss the influence of toughness contrastκc and spatial wavenumberk on Km, hence onKeq
c .

This choice ofKc allows to obtain a weak pinning regime and to focus, as wanted, on the influence
of the large deformations of the crack front on the effectivetoughness.

2 Numerical Procedure

A characteristic feature of this problem is that the shape ofcrack is determined by the variation of SIF
and material properties. In general, neither the distribution of SIF, nor the geometry of the crack are
known a priori and must be determined as part of the solution.An appealing perturbative technique for
solving such problems is provided by the studies of Rice [6],who has developed a linear scheme for
calculating the variation in SIF due to small changes in the crack geometry. For large deformations
of the front, Bower and Ortiz [4] followed by Lazarus [5], developed a powerful method based on
the iteration of the linear scheme. The efficiency of this method arises from the need for the sole 1D
meshing of the crack front. In the sequel, we extend the numerical notations and procedures developed
by Lazarus [5]. For dimensional reasons, we can introduce the dimensionless SIF̂K by writing:

K = σ∞
√

a0 K̂ (7)
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This quantity depends only on the crack shape.
We start from the initial situation of a crack of radiusa0 for which K̂ = 2√

π
. We then use a regu-

larization of Irwin’s criterion to obtain the crack front displacementδa(s) by a Paris’ type law [5]:

δa(s) = δamax

(
K̂(M(s))/Kc(M(s))

maxM∈F K̂(M(s))/Kc(M(s))

)β

with β ≫ 1. (8)

whereδamax corresponds to the maximum crack advance during a numericalstep. The corresponding
loading is obtained by introducing the definition 7 ofK̂ in equation 3:

σ∞
√

a0

Kc

=

[
max
M∈F

K̂(M)

1 + κcη(M)

]−1

(9)

Subsequently, Rice’s formulae (see Refs. [6, 5]) are used for updating the dimensionless SIF̂K cor-
responding to the advanceδa(s) and the whole step (determination ofδa, updating ofK̂) is reitirated
as long as necessary.

3 Results

The previous procedure is applied to the toughness map givenby Eq. (6). In § 3.1, the propagation
in the case of a given value ofk andκc is studied. In §3.2, the influence of those parameters on the
mean quantitiesKm andam is considered.

3.1 Propagation for a given toughness map
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(a) Successive crack front positions
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(b) Evolution of key quantities during propagation

Figure 2: Casek = 6 andκc = 0.3

As a typical example, the results fork = 6 andκc = 0.3 are shown in Fig. 2. On Fig. 2(a), successive
equilibrium positions of the crack fronts are plotted. The propagation is continuous without jumps,
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showing that the pinning is weak. One can notice that first thecrack front deforms from a circular
crack to ak-petals flower shape, which then remains the same. The process is as follows. In the initial
stage, the crack is circular, so that only the points whereKc is minimum propagate. Then, more and
more points reach the threshold and propagate at the same time. Finally, the crack front attains and
stays in a shape for which all of its points satisfyK = Kc (stationary regime) so thatKm is equal to
the mean value ofKc along the crack front:

Km =
1

L

∫

F
Kc(M(s))ds (10)

To quantify the moment where the crack shape becomes stationary, we introduce the amplitude∆a
of a(s), the value of∆a/am remaining constant for a given shape. The evolutions of∆a/am and of
the normalized mean SIFKm/Kc as a function of the mean radiusam are plotted on Fig. 2(b). It
can been seen that both quantities increase until a plateau is reached. The plateau corresponds to the
stationary regime. Once in this stationary regime, the effective toughnessKeq

c , whether it is defined
as the maximum or mean value ofKm, corresponds to the value of this plateau, hence to the mean
value ofKc along the crack front. It shall be noticed thatKeq

c < Kc. Physically, it is due to the fact
that the length of the crack front which is in the weaker zone is higher than in the stronger one, so
that the mean value ofKc along the crack front is lower than the mean valueKc of Kc in the whole
plane. This result is specific to the circular geometry, and it is linked to the dependance of the SIF on
the crack size. In next section, we discuss the influence ofk andκc on the value ofKeq

c .

3.2 Influence of the geometrical parameters of the toughnessfield

Figure 3 shows the effect of the toughness contrastκc and toughness spatial repartitionk on the nor-
malized effective toughnessKeq

c /Kc and on the crack front deformation∆a/am.

For a given values ofk, Keq
c /Kc = 1 for κc ≪ 1 and decreases, whereas∆a/am increases, with

κc. Physically, it looks obvious, that in case of higher contrast, the crack front deforms more, hence
propagates more in weaker regions and therefore, the mean toughness along the front is decreasing as
the contrast increases. For smallκc ≪ 1, it remains equal to one, as linear theory predicts [1, 8].

Now for a given value ofκc, Keq
c /Kc increases, whereas∆a/am decreases with the heterogeneity

wavenumberk, that is when the number of defects increases along the crackfront. Physically, it is
due to the fact that whenk increases, the amplitude of the deformation has less space to develop, and
so the front becomes more straight.

4 Conclusion

In this paper, we defined the effective toughnessKeq
c of a heterogeneous field of toughness as the

stationary mean value of the SIF along the crack front. In order to focus on the effect of the large
crack front deformations on this effective toughness, we studied numerically the case of a circular
crack propagating in an axisymmetric infinite toughness map. This allows us to reach a stationary
crack front shape regime in which Irwin’s threshold is reached at each point of the front. In this
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Figure 3: Influence of mapping parameter on the stationary regime

regime, we find that the SIFKm averaged along the front reaches a plateau that is equal to the mean
value ofKc along the crack front. Since the crack front deforms due the heterogeneities, this mean
value is different from the mean valueKc of Kc in the whole plane. It depends on the crack front
deformations, which themselves depend on the local toughness values. In the case studied here, the
deformations are more important in the weak part of the toughness map so thatKeq

c is lower thanKc,
the ratioKeq

c /Kc decreasing with increasing toughness heterogeneity or with decreasing the number
of obstacles. The next step is to extend this study to the caseof strong pinning with large crack front
deformations. Defining the equivalent toughness from the macroscopic loading required to make the
crack propagate, and not only from the local values of SIF along the front might then become crucial.
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[3] K. J. Måløy and J. Schmittbuhl. Dynamical event during slow crack propagations.Physical
Review Letters, 87:105502, 2001.

[4] A. F. Bower and M. Ortiz. Solution of three-dimensional crack problems by a finite perturbation
method.Journal of the Mechanics and Physics of Solids, 38(4):443–480, 1990.

[5] V. Lazarus. Brittle fracture and fatigue propagation paths of 3D plane cracks under uniform
remote tensile loading.International Journal of Fracture, 122(1-2):23–46, 2003.

-6-



13th International Conference on Fracture
June 16-21, 2013, Beijing, China

[6] J. R. Rice. Weight function theory for three-dimensional elastic crack analysis. In R. P. Wei
and R. P. Gangloff, editors,Fracture Mechanics : Perspectives and Directions (Twentieth Sympo-
sium), pages 29–57, Philadelphia, USA, 1989. American Society for Testing and Materials STP
1020.

[7] V. Lazarus. Perturbation approaches of a planar crack inlinear elastic fracture mechanics: a
review. Journal of the Mechanics and Physics of Solids, 59(2):121–144, 2011.

[8] H. Gao and J. R. Rice. Somewhat circular crack.International Journal of Fracture, 33:155–174,
1987.

-7-


	Problem definition
	Numerical Procedure
	Results
	Propagation for a given toughness map
	Influence of the geometrical parameters of the toughness field

	Conclusion

