Propagation of tensile planar cracks in highly heterogenews media: A numerical study
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Abstract: Effect of highly heterogeneous fracture properties oniempenny-shape planar crack propagation
governed by Irwin’s criterion is investigated numericddly taking into account the large crack front deforma-
tions induced by the high toughness contrasts. To compateatiations of stress intensity factor (SIF) along
the crack front arising from its progressive deformatioertprbation approach based on Bueckner-Rice weight
function theory is used iteratively. Effective fracturaiginess is obtained from the local toughness map for a
few examples. It is shown that when Irwin’s criterion is sféid all along the crack front, the effective tough-
ness is equal to the mean value of the local ones along thk frat. This value depends on the shape of the
front, and so is different from the total mean value of thegtmess in the plane. In the examples studied here,
the weak toughness zones are favored by the crack frontrdafioms, so that the effective toughness is lower
than its spatial average.

Keywords: Tensile planar crack; Heterogeneous medium; Effectilar&aproperties; Perturbation method;
Linear elastic fracture mechanics.

Quantifying the effective fracture properties of a plaraic& propagating in a heterogeneous material
is a key issue in material science. Since the crack propagedsults from the interplay of local mate-
rial properties with long range elastic interactions, thaybem is not trivial and can not, in general, be
reduced to take the spatial mean value of the fracture ptiepefwo regimes shall be distinguished
[lﬂ]: For slightly fluctuating maps of local toughness, thasgicity of the crack front dominates over
the destabilizing effects of heterogeneities, and theonatf the front is smooth (weak pinning). For
materials with stronger heterogeneities with larger gmadof toughness, the crack front can jump
abruptly from one equilibrium position to the other (strgrgning) B]. In the weak pinning regime,

it has been shown in the limit of a first order approach thaeffextive macroscopic toughness can be
obtained by averaging the local toughnesses, contraryetsttbng pinning case where the effective
macroscopic toughnesslarger than the average local toughness [1].

Here, we address these questions in the context of highbrdgeneous local fields of toughness
for which the first order approach can not be used. In padicwe take into account the effect of
large crack front deformations induced by high toughnessrasts, and investigate the relationship
between local toughness map and macroscopic effectivdnimss. In this paper, we will limit our
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study to the weak pinning quasistatic regime. We considercdse of a circular embedded crack
propagating under remote mode | loading in an axisymmaitigtiness map (seé¢ B 1). We solve the
problem by using an incremental meth&jﬁh, 5], based on Risefturbation approacE| [B 7]. This
method is presented in & 2 and then applied[ih § 3 to the résolaf our problem.

1 Problem definition

Figure 1: A tensile planar crack in an infinite body under ami stressr .,

Consider a planar penny shape cr&lof initial radiusag, embedded in an infinite isotropic elastic
medium with heterogeneous fracture toughness propertig$oaded in pure mode | through some
uniform remote stress applied at infinity, (see Fig[Il). We assume a quasistatic propagation of the
crack front, so that the crack advance at a paihof the front is governed by Irwin’s criterion:

K(M) < K.(M) : nocrack advance (1)
K(M)= K.(M) : possible crack advance,

whereK (M) is the SIF and<. (M) the toughness at poidt’. Let us denotds, the average material
toughnessk.(= AK./K.,) its relative contrast ang(1/) the toughness fluctuations. With these
notations, we have:

Ko (M) = K. [1+ ken(M)] (2)
We suppose that the remote loading adapts in order to stay in the quasistatic regime and to ensur
crack propagation at least, on some part of the front. Thigiew that at each moment:
X
MeF K (M)

—1 3)

Under the assumption of quasistatic propagation, the pnoli to find, for a given toughness map
K.(M), the successive positions of the crack front and the cooredipg loadingr,,. From them,
one can obtain the SIF along the crack front and consequisithgean value. In the homogeneous

2.



13th International Conference on Fracture
June 16-21, 2013, Beijing, China

case . = 0), the problem can be solved analytically. One has at eachentl = K, all along the
front, the successive positions of the crack front are egrcif radius: and the corresponding loading
follows o, = KT\/é In the heterogeneous case, the crack front deforms. In arogenization
process, we shall replace it by an equivalent circular codick

* radiusa,, given by the mean value of the crack extension

Ay = l/ a(M(s))ds (4)
L JF
* SIF K,,, given by the mean value df:
K, -~ / K (M(s))ds (5)
L Jr

wheres is the curvilinear abscissa aridis total length of the crack front.

We will see in the following that in the cases investigateh&,, tends to a constant stationary value
after some transient propagation regime. As a result, thtgogsary value will be used to define the
macroscopic effective toughness§“ of the heterogeneous media studied here. Alternativesdvoul
have been to defin&’¢* as the maximum value ok, during crack propagation or its mean value
during propagation. However, we would like to define an gffectoughness as a quantity that does
not depend of the initial geometrical configuration of thaalt, so the value ok, in the stationary
regime seems the most appropriate definition.

The aim of the paper is to discuss the influence of the toughmep X .(M) on this effective tough-
ness. In this paper, we consider it periodical and axisymmgitven by:

K. (M) = K_.[1+ k.cos(kO(M))] whered(M) denotes the polar angle 61, (6)

and discuss the influence of toughness contrasind spatial wavenumbéron K,,,, hence onk$9.
This choice ofK,. allows to obtain a weak pinning regime and to focus, as wamtedhe influence
of the large deformations of the crack front on the effectoxgghness.

2 Numerical Procedure

A characteristic feature of this problem is that the shapzadk is determined by the variation of SIF

and material properties. In general, neither the distigoubf SIF, nor the geometry of the crack are

known a priori and must be determined as part of the solufAmrappealing perturbative technique for

solving such problems is provided by the studies of Fiﬂ:e\,[&]o has developed a linear scheme for
calculating the variation in SIF due to small changes in tlaelc geometry. For large deformations

of the front, Bower and Ortiz[t4] followed by Lazarus [5], ddwped a powerful method based on

the iteration of the linear scheme. The efficiency of thishodtarises from the need for the sole 1D
meshing of the crack front. In the sequel, we extend the nigalerotations and procedures developed
by Lazarusﬁb]. For dimensional reasons, we can introdueelittinensionless SIK by writing:

K = 0oovJag K (7)
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This quantity depends only on the crack shape.

We start from the initial situation of a crack of radiug for which X = -~. We then use a regu-

Sk

larization of Irwin’s criterion to obtain the crack frontggilacemenba(s) by a Paris’ type Iaw|]5]:
~ s
da(s) = 0amas K(MA(S))/KC(M(S)) with 5> 1. (8)
maxyer K (M(s))/K(M(s))

whereja,,.. corresponds to the maximum crack advance during a numsteal The corresponding
loading is obtained by introducing the definitidn 7/6fin equatior B:

G/ rRon 1
] ?

Subsequently, Rice’s formulae (see Re@HG, 5]) are usedddating the dimensionless SIE cor-
responding to the advanée(s) and the whole step (determinationdf, updating ofK) is reitirated
as long as necessary.

3 Results

The previous procedure is applied to the toughness map biyéy. [6). In §3.11, the propagation
in the case of a given value éfandx. is studied. In €3]2, the influence of those parameters on the
mean quantitie#’,, anda,,, is considered.

3.1 Propagation for a given toughness map
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(a) Successive crack front positions (b) Evolution of key quantities during propagation

Figure 2: Casé& = 6 andx,. = 0.3

As a typical example, the results for= 6 andx. = 0.3 are shown in Fid.]2. On Fig. 2(a), successive
equilibrium positions of the crack fronts are plotted. Thiegagation is continuous without jumps,
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showing that the pinning is weak. One can notice that firstctlaek front deforms from a circular
crack to ak-petals flower shape, which then remains the same. The ricas follows. In the initial
stage, the crack is circular, so that only the points wheérés minimum propagate. Then, more and
more points reach the threshold and propagate at the sarae Eimally, the crack front attains and
stays in a shape for which all of its points satigfy= K. (stationary regime) so thdt,, is equal to
the mean value ok . along the crack front:

Kn=1 /F K(M(s))ds (10)

To quantify the moment where the crack shape becomes safjome introduce the amplitud&a

of a(s), the value ofAa/a,, remaining constant for a given shape. The evolutionA@fa,, and of

the normalized mean SIKm/FC as a function of the mean radiug, are plotted on Fid. 2(b). It
can been seen that both quantities increase until a pladgaached. The plateau corresponds to the
stationary regime. Once in this stationary regime, thecéffe toughnesg(¢4, whether it is defined

as the maximum or mean value &f,,, corresponds to the value of this plateau, hence to the mean
value of K, along the crack front. It shall be noticed thi&t? < K .. Physically, it is due to the fact
that the length of the crack front which is in the weaker zankigher than in the stronger one, so
that the mean value of. along the crack front is lower than the mean valigof &, in the whole
plane. This result is specific to the circular geometry, angllinked to the dependance of the SIF on
the crack size. In next section, we discuss the influenéeasfdx. on the value of (5.

3.2 Influence of the geometrical parameters of the toughned$®ld

Figure[3 shows the effect of the toughness contrasind toughness spatial repartitibron the nor-
malized effective toughneds:?/ K . and on the crack front deformatiaka/a,,.

For a given values of, K¢/K. = 1 for k. < 1 and decreases, whereas /a,, increases, with
k.. Physically, it looks obvious, that in case of higher costtréhe crack front deforms more, hence
propagates more in weaker regions and therefore, the maghrness along the front is decreasing as
the contrast increases. For small« 1, it remains equal to one, as linear theory predBtQ[l, 8].

Now for a given value of:., K¢/K . increases, whereasa/a,, decreases with the heterogeneity
wavenumbetlt, that is when the number of defects increases along the @raigk Physically, it is
due to the fact that whehincreases, the amplitude of the deformation has less spatsvelop, and
so the front becomes more straight.

4 Conclusion

In this paper, we defined the effective toughnéSs of a heterogeneous field of toughness as the
stationary mean value of the SIF along the crack front. Ireotd focus on the effect of the large
crack front deformations on this effective toughness, welisd numerically the case of a circular
crack propagating in an axisymmetric infinite toughness.méms allows us to reach a stationary
crack front shape regime in which Irwin’s threshold is reattat each point of the front. In this
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Figure 3: Influence of mapping parameter on the stationayiyne

regime, we find that the SIK,,, averaged along the front reaches a plateau that is equa toe¢lan
value of K. along the crack front. Since the crack front deforms due #terbgeneities, this mean
value is different from the mean valué, of K, in the whole plane. It depends on the crack front
deformations, which themselves depend on the local tolggweues. In the case studied here, the
deformations are more important in the weak part of the taegh map so thdt is lower thank .,

the ratio K4 /K . decreasing with increasing toughness heterogeneity brdeitreasing the number
of obstacles. The next step is to extend this study to theaasteong pinning with large crack front
deformations. Defining the equivalent toughness from theraszopic loading required to make the
crack propagate, and not only from the local values of SIR@tbe front might then become crucial.
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