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Abstract: This paper describes our experimental testing of linear viscoelastic creep behaviors in 
Hami Melon. Experimental data shows that Hami Melon has complex viscoelastic property 
which can not be well described by the standard model. Consequently, this study develops a 
fractional derivative model to describe such complex viscoelastic creep behaviors of Hami 
Melon. The analytical creep function of the proposed fractional linear viscoelastic models is 
derived via the Boltzmann superposition principle and discrete inverse Laplace transform. And 
then such analytical solutions are used to fit the experimental data of viscoelastic Hami Melon. 
Our study shows that the present fractional linear viscoelastic model with merely three 
parameters is more efficient and accurate than the generalized Kelvin viscoelastic model of six 
parameters to describe the stress—strain constitutive relations of Hami Melon. It is noted that 
the present fractional model with adjustable parameters can also be used to describe creep 
damage. 
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1. Introduction 
Hami Melon is famous for its delicious taste and aroma, and has become one of the most 
characteristic fruits in Xinjiang, China. However, a large amount of Hami Melon is often destroyed 
due to decay in storage and transport, which may be attributed to its high water content and 
maturates in hot summer. It has been recognized that biomaterials exhibit unique viscoelastic 
behaviours [1]. Such viscoelasticity has been investigated to minimize physical damage and 
improve textural quality of fruits. However, it is noted that the transient and dynamic measurements 
in most existing methods are restricted to small deformations within the linear viscoelastic range of 
specimens [4,5].These traditional linear models can not accurately describe complex viscoleastic 
behaviors of Hami Melon.  
On the other hand, the characterisation of non-linear behaviour of apple flesh under stress relaxation 
and the basic homogeneous assumption have been studied by Lu and Puri [1]. The measured 
vibrations can be visualised with experimental modal analysis, used in the past with pineapples and 
melons [6]. However, the classical nonlinear models are mathematically complex and require some 
obscure parameters which are not easy to obtain from measurement data.  
In recent decade, fractional derivative model has attracted great attention in the description of 
memory-dependent mechanics behaviours, such as dynamical behaviours of complex viscoelastic 
materials [7]. Fractional derivative viscoelastic models are presented by some researchers [7-14] 
and have been applied to a wide range of problems in bioengineering [15-19]. But little has so far 
been done on melon [6,15]. 
In this study, we employ the fractional-order Maxwell viscoelastic model to characterize the 
viscoelasticity of Hami Melon. Compared with the classical viscoelasitc model, our results show 
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that the present fractional derivative model can characterize creep behaviour of Hami Melon with 
better accuracy and fewer parameters. 
Among the objectives of this study are:  
(1) to describe experiments for measuring the anisotropic creep properties of Hami Melon;  
(2) to present a fractional linear viscoelastic model and determine its creep function;  
(3) to make a comparison between the fractional and classical models in terms of our experimental 
data. 

2. Experimental materials and methodology 

2.1. Preparation of Hami Melon specimens 

Fresh Hami Melons for experiments were hand-harvested on 25 August 2010 from the same 
orchard in Hami city, Xinjiang, China and were selected in terms of uniformity and placed in cold 
storage (6°C to 7°C and 70–80%RH). Four hours before testing, melons were taken to equilibrate at 
room temperature (20°C). Each specimen was peeled and cut in half longitudinally. After having 
removed the central and near the hull (approximately 1.5cm of each side) parts, cylindrical axial 
and radial specimens (50mm diameter by 10mm height) were put into a sealed container for 
experimental measurements. 
Anisotropic creep properties of melons were evaluated using cylindrical specimens taken in 
orthogonal radial and axial orientations, as shown in Fig. 1.  

 

Figure 1.  Location of specimens 
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2.2. Creep testing 

Creep tests, in which a shear stress is instantaneously applied to the specimen and then maintained 
constant, allow us to observe elastic, viscoelastic, and viscous flow behaviours, separately. 
Deformation and compliance increase with time. In the initial state of creep, the sample material 
behaves like a solid and subsequently like a fluid. Viscoelastic properties were characterized at 
20°C in a TA.XT plus Texture Analyser made by Stable Micro Systems Ltd, UK. 0.06% strain 
value was selected for experiments to ensure linearity for all specimens. 
Creep tests of melons were conducted by enforcing a constant shear stress 20Pa for duration of 60 
seconds. An often-encountered problem in measuring the physical properties of fresh or minimally 
processed tissues is that they are usually alive and respiring, and can be dehydrated by high strain 
rate during measurements. Thus, the interpretation of creep behaviour in this paper ascribes 
considerable importance to the time scale over which creep occurs. 

2.3. Analysis of data 

In this section, compliance data from creep experiments were fitted by a mechanical model 
consisting of one Maxwell model connected in series with two Kelvin models. It is noted that each 
Kelvin model has a spring and a dashpot in parallel as shown in Fig.2, which is described by the 
generalized Kelvin six parameters model [5], 
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where ( , )= ( ) /cJ t t cσ ε σ  denotes the creep compliance, ( )tε  is the strain at instant t, and cσ  is the 
constant stress; stands for the instantaneous compliance at t=0; (i=1,2) means 
the retarded compliances; 

0 1/J = 0E iE
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1/iJ =

i i Jλ η= × (i=1,2) represents the retardation times, and iη (i=1,2)  is the 
coefficients of viscosity associated with the Voigt elements; 0η  denotes the coefficient of viscosity 
associated with Newtonian flow, and its inverse is the steady-state fluidity of the material. The 
parameters are optimally chosen by an exhaustive algorithm which results in the minimum errors 
between the fitting curve and the observed data. 
 

 
 
 
 
 
 
 
 
 

2.4.  Fractional Maxwell modelling of creep   

The configuration of a fractional Maxwell model is shown in Fig.3 and consists of a spring and an 
Abel dashpot connected in series, which is characterized by replacing a Newtonian dashpot in the 
classical model with the fractional derivative Abel dashpot. 

E EEσ ε= ， /V Vd dtα ασ η ε=   ( 0 1α≤ ≤ ),                                                         (2) 

E Vε ε ε= + ， = E Vσ σ σ=   ,                                                                            (3) 
where σ and  ε denotes the stress and strain, respectively; E represents elastic coefficients of the 
spring; η  is the viscous coefficient of the Abel dashpot; subscript  E means the spring, and 
subscript V devotes the dashpot. 
 
 
 
 
 
 
 

 
Fractional Maxwell model of constitutive equation is as follows 
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Applying the Laplace transformation to Eq. (4) yields 
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Applying the discrete inverse Laplace transformation, we obtain  
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In particular, whenα is equal to 1, Eq. (8) is reduced to the standard Maxwell model for creep 
compliance, 
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namely, Eq.(10) is the standard  integer-order model [7]. 

3. Results and discussions  

3.1. Classical viscoelastic model  

Creep compliance curves of Hami Melon specimens are illustrated in Fig. 4. Deformation of all 
samples is finite after 60s creep. Figs. 4(a) and 4(b) display the curves of radial and axial specimens, 
respectively. For the time scale of the experiments, the behaviours were described via the six 
parameters in the creep model Eq. (1). Table 1 provides the mechanical parameters that define creep 
behaviour of Hami Melon tissues. According to the interpretation in Mittal [21], J  represents 
those bonds of structural units that are stretched elastically when the stress is applied and 
characterizes instantaneous and complete recoveries when the stress is removed. The linear region 
of Newtonian compliance t

0

0/η  reflects those bonds that are ruptured during the shear creep, and its 
time required to deform is longer than the creep-recovery period. 
As seen from Fig. 4, the viscoelastic creep compliances are significantly different between axial and 
radial specimens. The axial specimen has larger creep compliance than the radial one.  
Table 1 displays the relatively larger standard deviations observed in the creep experiments for 
measured viscoelastic properties of melon tissues. Much of this variability can be attributed to 
physiological factors, i.e., anisotropism and non-homogeneity, which change their mechanical 
properties with age, moisture content, and locations around the melon and depth from which the 
specimen is taken [21,22].  
 

Table 1  Creep compliance parameters of fresh Hami melon tissues in Eq. (1)  

J1 
-51/Pa 10×（ ）  

J2
-51/Pa 10×（ ） 1(s)λ  2 (s)λ  0η   J0 

  -51/Pa 10×（ ）
 

specimen  7Pa s 10⋅ ×（ ）  

radial 0.5 0.41 0.21 18 3.1 5 

axial  0.65 0.72 0.51 18.1 5.1 7 

3.2. Fractional Maxwell model  

It is worth stressing that the curves displayed in Fig. 4 match quite well with the experimental creep 
data. This highlights the validity of the present fractional constitutive expression of Hami Melon 
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viscoelasticity, which captures experimental data of creep tests by using merely the three 
parameters as shown in Table 2. The next experiment will examine if the fractional order 
constitutive model can depict the nonlinear gradual process of strain in creep. 
 

Table 2.  Creep compliance parameters for fresh Hami Melon tissues in Eq.(8)  
 Sample (MPa)E  (MPa.s)η  α   
 radial  0.2 0.56 0.3  

axial 0.14 0.49 0.38  

3.3. Comparisons 

We can see from Fig. 4(a) that compared with the classical viscoelasitc models, the fractional 
Maxwell model has the same level of accuracy in the fitting of experimental data but requires 
significantly fewer adjustable parameters. Fig. 4(b) shows that the classical model only fits well the 
elastic variation, initial small value of J, and then has a large departure from experimental data 
when viscosity comes into play. In stark contrast, the fractional model agrees pretty well with the 
experimental data for the whole viscoelastic duration with three parameters. In general, our results 
show that the present fractional derivative model can characterize creep behaviour of Hami Melon 
with better accuracy and fewer parameters. 

 

Figure 4. Creep compliance curve; a)radial; b)axial
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Experimental data
Fractional Maxwell model
Generalized Kelvin model with six parameters

 

4. Conclusions 
This work shows the experimental results of creep tests of Hami Melon. All tests have been 
conducted in a range of small deformation, so that such creep can be reasonably treated as linear 
viscoelasticity. The standard linear and the present fractional derivative creep models have been 
investigated for comparisons in fitting our experimental data. The fractional derivative model not 
only reduces the computational effort in identification of coefficients, but also appears more 
promising in modeling of different loading conditions, with fewer parameters.   
The creep tests for the specimens in different locations of Hami Melon has illustrated that the creep 
modulus is significantly influenced by the location and orientation of the specimens. The proposed 
fractional derivative model can accurately simulate the creep characteristics of different specimens, 
and the creep damage of Hami Melon in the transport and storage can be predicted. This study is 
very encouraging and more work is under way to apply the fractional model to damage behaviours 
of fruits, which will be reported in a subsequent paper.  
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