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Abstract The mechanism of dynamic size effect of strength of rock is studied from the viewpoint of 
structural hierarchy. Relaxation model of Maxwell type for rock is used to obtain the relationship between 
strength, sample size and strain rate. It is shown that because of the finiteness of crack propagation velocity, 
when the strain rate is well above certain characteristic strain rate, dynamic loading process takes 
predominant role, the stresses in sample have not enough time to relax, the larger the sample size is, the 
more time is needed for cracks in sample to go through the sample, the ultimate applied stresses before 
macrofracture are greater and the strength is higher. From other hand because of the size effect the higher 
dynamically applied stresses will activate the cracking at smaller scale levels of rock sample, and the 
fragment size is smaller. Based on the presented model the characteristic strain rate separating the 
predominant diapasons for static and dynamic size effect is determined, and the fragment size is predicted 
satisfactorily.  
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1. Introduction 

 
The strength of rock-like materials has size effect, i.e. it depends on the size of the samples. The 

general law of the size dependence of strength is that it decreases with the increase of the sample 
size.  

Static size effect of strength has been studied by many scientists. According to Bazant size effect 
of strength can be separated into two kinds [1]：(1) statistical, described by the Weibull [2, 3, 4] 
theory of random local material strength, and (2) energetic (deterministic). The latter includes type I 
size effect[5-10], occurring in materials that fail at crack initiation from a smooth sample surface, 
and type II size effect[5, 11-14], occurring in materials with a deep notch or deep stress-free crack 
formed stably before reaching the maximum load. Another approach to size effect is based on the 
concept of fractality. The self-similarity (fractality) in concrete deformation and fracture has been 
studied by Z. Bazant Z.[7], Carpinteri A., Pussi. S., Pugno N.M. et al [15, 16]. And the mechanics of 
hierarchical materials has been also developed [17].  

    As to size effect of dynamic strength of rocks, the research is relatively rare and the reached 
conclusions are controversial [18, 19, 20, 21]. For clarification of the size effect of rock strength 
under dynamic loading condition, recently Hong Liang, Li Xibing et al. have performed refined 
research on size effect of rock dynamic strength and strain rate sensitivity[22]. The reached 
conclusions are interesting. The test results show that the rock dynamic strength increases with 
strain rate in power law which agrees with the research results of many other scientists. The 
interesting result is that the larger the specimen size is, the more notable the strain rate sensitivity of 
dynamic strength of rock is; the rock dynamic strength increases with the increase of specimen size 
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under the same strain rate which is opposite to the size effect under static loading condition (see 
Fig.1 and 2 for granite). The size effect of dynamic strength becomes weaker with the decrease of 
strain rate and there exist a critical strain rate below which static size effect takes dominant position. 
In addition, experiments show that the fragment size decreases significantly with the increase of 
sample size (see Fig.3). The less the sample size is, the more is the dispersion of the experimental 
results.  

 

     
 

Fig. 1 Strain rate effect of strength of granite under       Fig. 2 Size effect of strength of granite under 
different strain specimens diameters                    different strain rates   

   
 

    

(a) d=75mm, 123.98 −= sε&      (b) d=36mm, 175.99 −= sε&     (c) d=22mm, 138.164 −= sε&  

Fig.3 Fragmentation of granite specimens with different sizes 
  

    Until now the underlying mechanism of dynamic size effete of rocks has not been intepretated. 
Therefore in the present paper we will make a trial to perform some theoretical study aiming at 
clarifying the underlying mechanism of dynamic size effect of rock. 
  
2. Mechanism underlying dynamic size effect of rock strength 

 
As natural materials rock-like materials have complex internal structure, the scales of which span 

a huge scale range. For rock mass an important peculiarity is the similarity of the internal structure 
in a wide range of sizes. Investigations [23]showed that, a fundamental canonical series for the sizes 

iΔ  of geo-blocks exists： 
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( ) 02 Δ=Δ
−i

i                                           (1) 

where ×=Δ 5.20 106 m is the radius of Earth’s core; i  is positive integers. As demonstrated in [24], 
the atomic-ionic radii of different valent orbits of 98 elements in the table of Medeleev also obey 
canonical series of Eq.(1). Therefore canonical series of Eq.(1) is valid for huge range of scale sizes 
from continental level to atomic-ionic level. 

Some relation between the thickness of the weakened structural surfaces (or the opening of 
cracks) separating structural elements and the characteristic size of the elements at the given scale 

level exists. According to investigation in [25], the ratio of the openings of cracks iδ  to the 

characteristic linear size of the blocks iΔ  separated by the weakened structural surfaces (or cracks)  

at i-th scale level is stable, and can be described by the following relation which has a normal 
statistical distribution:  

( ) 210−Δ ⋅Θ=
Δ

=
i

iδδμ                                      (2) 

where Θ is a coefficient changing in the interval 1/2－2, and parameter Δμ  is termed as “geo- 

mechanical invariant” in [25].  
In-situ observations of destruction of earth’s crust[26] and theoretical and experimental studies on 

smaller scale rock samples [27] revealed that the deformation and fracture of rock-like materials are 
governed by laws of Maxwell bodies. This conclusion allows us to describe the deformation and 
fracture of rock-like materials by Maxwell model. 

The internal structure of rocks has decisive impact on mechanical behavior of rocks. If the 
strength of crystals with ideal regular lattices is their theoretical strength, then the strength of real 
materials is about 2-3 orders lower than the theoretical strength for ideal crystals. Obviously, the 
complex hierarchic internal structure of real materials will causes the stress concentration and strain 
localization which are responsible for lowering of real material strength.   

As a reference medium we take ideal crystal with ideal regular lattices. Image that such ideal 
crystal is subjected to intensive external loading, the intensity of which is high enough, but the 
induced stress state is well below the strength limit. In this case in crystal no damage and fracture 
occur and no stress relaxation takes place. But if the ideal crystal is replaced by real rock mass with 
complex internal structure, then under the action of such intensive external loading stress 
concentration and successively damage and fracture will occur. Consequently part of the stresses in 
rock mass will relax. Therefore we can think that in such solid stresses are consisted of two 
components: elastic stresses caused by the reversible volume and shear deformations, and the local 
inelastic stresses in heterogeneities which are responsible for the irreversible deformations. The 
elastic stresses are related to the reversible deformations linearly. As to the residual stresses 
(inelastic stresses), they arise at definite strain rate, and relax with time. The evolution equation for 

the residual stress deviator l
ijsΔ  in heterogeneities may be described by Maxwell model   
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where l
ijsΔ  is the residual stress deviator components in heterogeneities with characteristic scale l ; 

ije&  is the residual strain rate deviator components; ρ  is the density of the medium; v  is the 

relaxation velocity, which may be looked at as the effective propagation velocity of single or 

multiple cracks depending on the loading conditions; sc is the propagation velocity of the elastic 

shear wave. Here we suppose that all residual stress components relax with the same relaxation time. 

Essentially vl may be considered as relaxation time vl=τ . 

The main feature of this model is that, the relaxation rate of the residual stresses in 

heterogeneities is proportional to the magnitude of the residual stresses, and inversely proportional 

to the size of the heterogeneities. The growth of residual stresses is controlled by two contradicting 

factors in the right hand side of Eq.(1): the residual stress growth rate ijs ec &22ρ  and the relaxation 

rate of residual stresses lsv l
ijΔ . It is necessary to note that this model is applicable not only to 

different rock-like materials with great variation range of relaxation times, but also applicable to 

highly viscous fluids for which the relaxation time is relatively short [28].  

The solution of Eq. (4) has the following form:  

[ ] [ ]ττρρ t
ijs

lvt
ijs

l
ij eece

v
lecs −− −=−=Δ 1212 22 &&                         (4) 

For short loading time τ<<t , relaxation process has not enough time to develop, and the 
loading process is the predominant factor, in this case Eq.(4) gives  

ijsijs
l
ij ectecs 22 22 ρρ =≈Δ &                                      (5) 

i.e. the residual stresses will increase almost linearly.  
For long loading time τ>>t , relaxation process has enough time to develop, loading process is 

limited by the relaxation time, in this case Eq.(4) gives 

v
lececs ijsijs

l
ij && 22 22 ρτρ =≈Δ                                    (6) 

  For the occurrence of macrofracture, it is necessary that the loading time is greater than 
relaxation time τ>t , therefore Eq.(6) is appropriate for study of macrofracture of the samples. 

  Substituting Eq.(6) into the expression 23 l
ij

l
ijI ss ΔΔ=Δσ  for intensity of residual stress 

deviator, we obtain 

v
lc IsI ερσ &23=Δ                                            (7) 

where 32 ijijI ee &&& =ε  is the residual strain rate intensity.  

It can be seen from Eq. (7) that if we fix the applied strain rate, then the greater the size of the 
heterogeneities is, the greater the residual stresses are. If the size of the body is infinite, then we can 



13th International Conference on Fracture 
June 16–21, 2013, Beijing, China 

-5- 
 

always find large enough heterogeneities that their residual stresses are large enough to cause the 
fracture of the body. In this way, at constant strain rate among the parameters of solid a parameter 
with dimension of length arises. Stress concentration causing residual stress in heterogeneous media 

is the main cause for material fracture, the limit residual stress causing fracture of the body ∗σ may 

be looked at as the strength Yσ of the sample with size D . Therefore Eq.(7) may be rewritten as  

v
Dc IsY ερσ &23=                                           (8) 

  Eq.(8) explicitly shows that dynamic strength is proportional to the size of sample, and inversely 
proportional to the the relaxation velocity. The physical mechanism is as follows. Experiments show 

that the maximum crack growth velocity is limited and is below the Rayleigh wave speed RC  [29] 

(Fineberg, Marder, 1999). Therefore the relaxation velocity is also limited. The larger the sample 
size is, the more is the time needed for the occurrence of macrofracture, and the higher is the 
reached ultimate amplitude of loading. 

Now let us use the obtained fequation (8) to model the dynamic size effect.  

For granite we take the Young’s elastic modulus as PaE 10105.5 ×= , Poisson’s ratio as 

29.0=μ , then the shear modulus is PaG 101013.2 ×= . Now let us with the help of Eq.(8) to fit 

the experimental data.    
For sample with size mmmD 022.022 == , we obtain that the effective relaxation velocity is 

sm /3515=ν . 
For sample with size mmmD 036.036 == , we obtain that the effective relaxation velocity is 

sm /2465=ν . 
For sample with size mmmD 075.075 == , we obtain that the effective relaxation velocity 

is sm /1867=ν . 
  It is clear that the effective relaxation velocity is dependent of the specimen size and decreases 
with the increase of sample size. The dependence of effective relaxation velocity on sample size is 
shown in Fig.4. 
 

 
Fig.4 The dependence of velocity of crack propagagtion on specimen size 
 

In the diapason of the sample sizes tested we will use the following equation to interpolate the 
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dependence of crack propagation velocity on the sample size 

                    ( ) 6.6056140359.112 2 +−= DDDv                             (9) 

where the unit of d is cm.  
  Therefore we now should use the following equation for determination of the dynamic strength of 
material. 

( )Dv
Dc IsY ερσ &23=                                        (10) 

Using Eq. (10) we can accurately fit the experimental data shown in Fig.(2) and (3). 
Now let’s analyze the size effect on dynamic fragmentation. 

 
3. The determination of fragment size of rock 
 
The static size effect and dynamic size effect are depicted in Fig.5.  

   
Fig.5 The mechanism of dynamic fragmentation  

 

The static strength of rock mass depends on the sample size. Generally, the compressive strength 
of materials Dσ  can be expressed as a function of the sample size D as follows [5]: 

( ) 21
00 1 −+= DDD σσ                                      (11) 

where 0σ  and 0D  are constants.  Eq.(11) can be rewritten as  

( )[ ]12
00 −= σσDD                                       (12) 

where parameter Dσ  is replaced by σ  representing the applied loading. 

For fast dynamic loading process, because of the finiteness of relaxation velocity, failure will be 
delayed, and overloading will take place. Therefore for large enough rock sample dynamic strength 
will be higher than static one. The higher loading will activate the deformation and fracture process 
in rock at smaller scale element levels, and the rock will fracture according to the static size effect 
law of rock as shown in Fig.5.  

Replacing σ  in Eq. (12) by Yσ in Eq. (11), we obtain the following formula for determining 

the fragment size of fractured rock mass fD ： 
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For determing  0σ  and 0D , we use the data in Fig.3(a) and (b):  

For 123.98,75 −== smmd ε& ，the dynamic strength is MPaY 220=σ , and the fragment size is 

approximately cmD f 2.0=  

For 175.99,36 −== smmd ε& ，the dynamic strength is MPaY 105=σ , and the fragment size is 

approximately cmD f 47.1= . 

From these data we obtain mmD 75.10 = ， Pa8
0 1022.3 ×=σ . 

Hence we have  

( )[ ] ( ) ⎥⎦
⎤

⎢⎣
⎡ −××=−= − 11022.31075.11

2832
00 Yf DD σσσ                (14) 

Now let us use Eq.(14) to predict the experimental result shown in Fig.3(c). For the case shown in 

Fig.3(c), mmd 22= . We know from Fig.1 (a) that for 138.164 −= sε& , MPaY 100≈σ . Substituting 

MPaY 100≈σ  into Eq.(14) we have mmD f 4.16= , which is very close to the fragment size in Fig.3 

(c): mmD f 6.15222 =≈ . Therefore the model is sufficiently good for the description of the 

dynamic effects on strength and on dynamic fragmentation. 
 

4. The determination of characteristic size and characteristic strain rate for rock 
 
Now let us discuss the characteristic size and characteristic strain rate for rock samples. 

For fixed strain rate Iε& , from the following equation 

( ) ( )c

c
IsYcD Dv

D
cDD ερσσσ &221

00 31 ==+= −  

we can determine the characteristic size CD for rock, above which dynamic size effect of rock 

strength will predominate.  
From other hand for fixed rock sample size D  from equation 

( ) ( )Dv
DcDD IcsYD ερσσσ &221

00 31 ==+= −  

we obtain the characteristic strain rate 

( )
( )

( )
( ) 21

0

0
21

0
2

0

1313 DDGD
Dv

DDDc
Dv

s
Ic

+
=

+
=

σ

ρ

σ
ε&                         (15) 

From Eq. (15) it is clear that under fixed rock sample size D , when strain rate Icεε &&> , dynamic 
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size effect takes dominant position, and when Icεε &&<  static size effect predominates. From other 
hand, under fixed strain rate Icε& , when strain rate cDD > , dynamic size effect takes dominant 
position, and when cDD <  static size effect predominates.  

Now let’s evaluate the order of the predicted characteristic strain rates. 

For mmd 75= , sm /1867=ν , PaG 101013.2 ×= , mmD 75.10 = ， Pa8
0 1022.3 ×=σ , the 

predicted characteristic strain rate is  

( )
( ) ( )

s
DDGD

Dv
Ic /9.18

75.1751105.71013.23
10867.11022.3

13 212-10

38

21
0

0 =
+×××××

×××
=

+
=

σ
ε&  

For mmd 36= , sm /2645=ν , PaG 101013.2 ×= , mmD 75.10 = ， Pa8
0 1022.3 ×=σ , the 

predicted characteristic strain rate is  

( )
( ) ( )

s
DDGD

Dv
Ic /74

75.1361106.31013.23
10465.21022.3

13 212-10

38

21
0

0 =
+×××××
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=

+
=

σ
ε&  

For mmd 22= , sm /3515=ν , PaG 101013.2 ×= , mmD 75.10 = ， Pa8
0 1022.3 ×=σ , the 

predicted characteristic strain rate is  

( )
( ) ( )

s
DDGD

Dv
Ic /227

75.1221102.21013.23
10515.31022.3

13 212-10

38

21
0

0 =
+×××××

×××
=

+
=

σ
ε&  

Comparing with Fig.1 we can see that if the static strength of granite is 70 Mpa, the predictions 
are good enough. 

 
5. Conclusion 

Rock-like materials have complex internal structure, the scales of such complex structure span a 
huge scale range. At the same time deformation and fracture of rocks proceed in real time, and their 
temporal scales are related to the internal structure and physical-mechanical properties of rocks. To 
understand the nature of dynamic size effect of strength of rocks it is necessary to consider the 
structural hierarchy and the temporal properties of deformation and fracture process of rocks. In the 
present paper relaxation model of Maxwell type for rock is used to obtain the relationship between 
strength, sample size and strain rate. It is shown that when the strain rate is well above certain 
characteristic strain rate dynamic loading process takes predominant role. Because of the finiteness 
of crack propagation velocity, the larger the sample size is, the more time is needed for cracks in 
sample to go through the sample, and the ultimate applied stresses before macrofracture are more 
and the strength is higher. Factually the dynamic strength is induced by overloading. From other 
hand because of the size effect of rock strength, the overloading will activate the cracking at smaller 
scale levels of rock sample, and the fragment size is smaller. From the present model the 
characteristic strain rate separating the predominant diapasons for static and dynamic size effect is 
determined, the dynamic fragmentation size is predicted well.   
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