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Abstract  Nanostructured piezoelectric materials hold a promise for the development of novel nanodevices 
in nanoelectromechanical systems (NEMS) due to their efficient electromechanical coupling.  To fulfill 
their potential applications, it is essential to quantitatively predict their fundamental physical and mechanical 
properties. In this work, the unique size-dependent properties of piezoelectric nanomaterials, which are 
believed to attribute to surface effects and flexoelectricity, are investigated through a modified Euler beam 
model. The surface effects are accounted in a modified beam theory through the surface piezoelectricity 
model and the generalized Young-Laplace equations, while the flexoelectricity is considered by using the 
higher-order theory of piezoelectricity. Simulation results on the vibration analysis of piezoelectric 
nanobeams reveal that the influence of surface effects and flexoelectricity varies with beam thickness and 
aspect ratio, in particular, such influence becomes more pronounced with the decrease of beam thickness. 
Vibration analysis also identifies possible frequency tuning of piezoelectric nanobeams by electrical load. In 
addition, the effect of axial boundary constraints in modeling has been studied, which provides a clear 
interpretation on the relaxation phenomenon of nanobeams under certain boundary constraints. This study is 
expected to provide a quantitative understanding on the fundamental physics of piezoelectric materials, thus 
leading to a better design for piezoelectric nanobeam-based devices. 
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1. Introduction 
 
One-dimensional piezoelectric nanostructures, such as piezoelectric nanowires, nanobelts and 
nanorods have been extensively used in nanoelectromechanical systems (NEMS) as nanosensors [1], 
nanoresonators [2] and nanogenerators [3, 4]. The superior performances exhibited by these devices 
can be attributed to the novel electromechanical coupling properties of piezoelectric materials at 
nanoscale. Therefore, to reveal the underlying physical mechanisms of piezoelectric nanomaterials 
and to achieve the unprecedented improvements of these nanosized devices, it is essential to 
conduct a quantitative study on the physical and mechanical properties of nanostructured 
piezoelectric materials.  
 
“Small is different”, it is expected that the physical properties of piezoelectric nanomaterials differ 
from their bulk counterparts. Efforts have been devoted to investigating the physical properties of 
piezoelectric nanostructures. For example, it was experimentally observed that the elastic and 
fracture properties of piezoelectric nanowires demonstrated a size-dependent behavior unlike the 
bulk piezoelectric wires [5, 6]. The size-dependent mechanical properties of piezoelectric 
nanomaterials have also been confirmed by conducting atomistic modeling and simulations [7]. 
Based on a molecular dynamics study, the size effects were found to have a prominent influence on 
the polarization distribution, piezoelectric coefficient and hysteresis behaviors of BaTiO3 nanowires 
[8]. All the aforementioned studies indicated the size effects played a significant role in predicting 
the mechanical and physical properties of piezoelectric nanostructures. In parallel to experimental 
work and atomistic studies, continuum mechanics modeling, as an alternative and efficient tool, has 
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been naturally resorted to investigate the mechanical properties of nanostructured materials. 
However, classical continuum approaches, which ignore the variation of interatomic quantities, fail 
to capture the size effects of materials at nanoscale. Therefore, non-classical continuum models with 
the consideration of size effects are necessary to conduct the mechanical and physical analysis of 
nanoscale structures. 
 
Due to the large surface area to volume ratio of typical nanostructures, surface effects are believed 
to attribute to the size-dependent properties of these structures. By taking into account of surface 
effects, Gurtin and Murdoch proposed a surface elasticity model for elastic materials [9], in which a 
surface is modeled as a thin layer with negligible thickness adhered to the bulk without slipping, 
and the constitutive and equilibrium equations for the surface layer are different from those in the 
bulk of the solid. Using this model, the size-dependent properties of elastic nanomaterials have been 
successfully predicted [10-12]. However, the surface elasticity model is not sufficient to investigate 
the mechanical behaviors of piezoelectric nanostructures with electromechanical coupling 
properties. In order to solve this problem, modified continuum model with electric field dependent 
surface effects has been developed for piezoelectric nanostructures [13]. In this surface 
piezoelectricity model, the surface stresses depend on surface piezoelectricity in addition to surface 
elasticity and residual surface stress incorporated in the surface elasticity theory. Based on this 
novel surface piezoelectricity model, the static and dynamic behaviors of various piezoelectric 
nanostructures have been investigated [13-16]. Simulation results indicated that the surface effects 
had a significant influence on the static bending, vibration and mechanical buckling properties of 
these piezoelectric nanostructures.  
 
In literature, flexoelectricity was also believed to be responsible for the size-dependent properties of 
piezoelectric nanomaterials, which refers to a spontaneous polarization of dielectric materials due to 
a strain gradient or a non-uniform strain field. Maranganti et al. proposed a theoretical framework 
for dielectrics with the consideration of flexoelectricity, elucidating the mechanism for 
size-dependent electromechanical coupling due to strain or polarization gradients [17]. The strong 
size-dependent enhancement of the effective piezoelectric coefficients of piezoelectric 
nanomaterials was demonstrated by Majdoub et al. [18] with the incorporation of flexoelectricity 
into piezoelectricity theory. Eliseev et al. investigated the renomalization in properties of 
nanoferroics due to spontaneous flexoelectric effect [19]. Recently, Liu et al. studied the effect of 
flexoelectricity on electrostatic potential in a piezoelectric nanowire [20]. These existing studies 
indicated the necessity of considering flexoelectric effect in characterizing the properties of 
nanostructured piezoelectric materials. 
 
The objective of this work is to conduct the vibration analysis of a piezoelectric nanobeam with the 
consideration of surface effects and flexoelectricity. The surface effects are accounted in a modified 
beam theory through the surface piezoelectricity model and the generalized Young-Laplace 
equations. It should be mentioned that in the current study, the surface effects on the vibration of the 
piezoelectric nanobeam will be investigated with the consideration of axial boundary constrains, 
which have been ignored in existing studies. In addition, the flexoelectric effect on the vibration 
behavior of a piezoelectric nanobeam will be studied using the higher order theory of 
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piezoelectricity.  
 
2. Surface Effects on the Vibration of Piezoelectric Nanobeams 
 
In this work, the vibration of a piezoelectric nanobeam with length L, thickness h and width b is 
studied with surface effects. As seen from Fig. 1(a), the beam is modeled as a bulk core surrounded 
by surface layers with negligible thickness. A Cartesian coordinate (x, y, z) is used to describe the 
piezoelectric beam, which is poled in z direction. An electric potential V is applied between the 
upper and lower surfaces of the beam with the electric boundary conditions ( )/ 2h VΦ =  and 

( )/ 2 0hΦ − = . The electric field is assumed to exist only in the beam thickness direction and can be 

determined from the electric potential Φ  as /zE z= −∂Φ ∂ . To account for the surface effects, a 
surface piezoelectricity model is adopted here [13, 14]. According to this model, the constitutive 
equations for the surface and bulk of the one-dimensional beam can be expressed as follows: 
 s 0 s s s 0

11 31 ,  x x x z x xc e E D Dσ σ ε= + − = , (1) 
 11 31 31 33,  x x z z x zc e E D e Eσ ε ε κ= − = + , (2) 

where s
xσ  and s

xD  are surface stress and surface electric displacement; 0
xσ  and 0

xD  are residual 

surface stress and surface electric displacement; s
11c  and s

31e  are surface elastic and piezoelectric 

constants; xσ and zD are bulk stress and bulk electric displacement; 11c , 31e and 33κ are bulk 

elastic, piezoelectric and dielectric constants; xε  and zE  are the strain and electric field. 

 
Figure 1. (a) Cross sectional view of a piezoelectric nanobeam with surface layers and bulk core. (b) An 

incremental element of the beam 
 

The existence of surface stress induces traction jumps exerting on the bulk of the beam, as shown in 
Fig. 1(b). It should be mentioned that these traction jumps exist on the circumferential surfaces of 
the beam. According to the generalized Young-Laplace equations [21], traction jumps xT and 

zT can be written as: 

 
s s

,  x x
x zT T

x R
σ σ∂

= =
∂

, (3) 

with R being the radius of curvature defined positively when the normal of surface is pointed 
towards the center of curvature. Based on the free-body diagram of an incremental element of the 
beam, as shown in Fig. 1(b), the governing equations of the piezoelectric nanobeam are derived as 
follows: 
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 ( )2
0

2

,
dxc

u x tP T c bh
x t

ρ
∂∂

+ =
∂ ∂∫ , (4) 

 ( ) ( )2 22

2 2 2

zd, ,
d

xc
zc

T cw x t w x tM P T c bh
x x x t

ρ
∂∂ ∂∂

− − − = −
∂ ∂ ∂ ∂

∫
∫ , (5) 

where c is the perimeter of the beam cross-section; ρ is the mass density; d dxP y zσ= ∫  and 

zd dxM y zσ= −∫  are the axial force and bending moment; u0(x, t) and w(x, t) are the axial 

displacement at z=0 and the transverse displacement.  
 
Assuming that the beam thickness is much smaller than the radius of curvature induced by the 
applied loads and the beam cross section is constant along its length, thus, the Euler-Bernoulli beam 
theory can be adopted for modeling the piezoelectric nanobeam and the axial strain is expressed as: 

 ( ) ( )2
0

2

, ,
x

u x t w x t
z

x x
ε

∂ ∂
= −

∂ ∂
. (6) 

It is worth noting that in existing studies of both elastic and piezoelectric nanobeams, u0(x, t) was 
assumed as zero based on the conventional Euler-Bernoulli model, therefore, the first term of Eq. (6) 
was ignored accordingly [10-12, 14, 15]. However, this assumption may not be accurate since u0(x, 
t) is not necessary zero for the nanobeam with surface effects. For example, the existence of surface 
stress induces an axial relaxation displacement as discussed in literature [22]. In addition, for 
piezoelectric nanobeams, the applied electrical load may also induce an axial displacement due to 
the inherent electromechanical coupling of piezoelectric materials. In fact, the beam can be either 
constrained without axial movement or allowed to have free movement with traction free boundary 
conditions. Therefore, the axial boundary conditions may influence the surface effects on the 
vibration behavior of piezoelectric nanobeams, which will be discussed later in this section. 
 
In the absence of free electric charges, the electric displacement satisfies Gauss’s law 

/ / / 0x y zD x D y D z∂ ∂ + ∂ ∂ + ∂ ∂ = , which gives an explicit expression of the electric field. Assuming 

( )0 ,u x t  is independent of time t and substituting Eqs. (1)-(3) and (6) into Eqs. (4) and (5), the 

following governing equations can be obtained as: 

 ( ) ( )2
0s

11 11 22 2 0
u x

c bh b h c
x

∂
⎡ ⎤+ + =⎣ ⎦ ∂

, (7) 

 ( ) ( ) ( ) ( )4 2 2
* *

4 2 2

, , ,w x t w x t w x t
EI N bh

x x t
ρ

∂ ∂ ∂
− = −

∂ ∂ ∂
, (8) 

in which ( ) ( )( )* 2 3 s s 3 2
11 31 33 11 31 31 33( ) / /12 / / 6 / 2EI c e bh c e e h bhκ κ= + + + + is the effective bending rigidity 

of the beam and [ ]* 0 s s
11 0 31 11 0 31/ / 2 / /xN c u x e V h bh c u x e V h bσ⎡ ⎤= ∂ ∂ + + + ∂ ∂ +⎣ ⎦ .  

 
In this work, the vibration analysis will be conducted for cantilever (C-F), simply-supported (S-S) 
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and clamped-clamped (C-C) piezoelectric nanobeams, respectively. The boundary conditions are 
prescribed as:  

 * * *
0 =0 at 0,  =0 at wu w x P M Q x L

x
∂

= = = = = =
∂

 (C-F), (9) 

 
*

0
* *

=0 at 0 and  (Case 1)
=0 at 0 and  (Case 2)

u w M x x L
P w M x x L

⎧ = = = =
⎨

= = = =⎩
 (S-S), (10) 

 0 =0 at 0 and wu w x x L
x

∂
= = = =

∂
 (C-C), (11) 

where [ ] ( )* s 0 s s
11 0 31 11 0 31d d d / / 2 / /x x xc

P y z c c u x e V h bh c u x e V h b hσ σ σ⎡ ⎤= + = ∂ ∂ + + + ∂ ∂ + +⎣ ⎦∫ ∫ is the effective 

axial force; ( )** 2 2/M EI w x= ∂ ∂ is the effective moment; and ( )** 3 3 */ /Q EI w x N w x= ∂ ∂ − ∂ ∂ is 
the effective shear force. It should be mentioned that two different axial boundary conditions may 
apply for simply-supported piezoelectric beam, as shown from Eq. (10). The beam is constrained 
without axial moving under the Case 1 boundary condition while traction free is adopted under the 
Case 2 boundary condition. The traction free boundary condition is also adopted for the cantilever 
beam as indicated in Eq. (9). Under this condition, an uniform strain 

( )0 s s
0 31 31 11 11/ = 2 2 ( ) / / 2 ( )xu x e Vb b h e V b h h c bh c b hε σ⎡ ⎤ ⎡ ⎤= ∂ ∂ − + + + + + +⎣ ⎦ ⎣ ⎦  is induced by the applied 

electrical load and surface effects, which will influence the vibration behavior of piezoelectric 
nanobeams. After applying these boundary conditions, the resonant frequencies of the piezoelectric 
nanobeams can be determined. For conciseness, the derivation procedures are omitted here. 
 
To show the surface effects on the vibration behavior of a piezoelectric nanobeam quantitatively, 
PZT-5H is taken as an example material with the bulk material properties being c11=126 GPa, 
e31=-6.5 C/m2 and к33=1.3×10-8 C/V·m. In addition, the surface properties are taken as 

s
11 7.56 N/mc = , s 8

31 3 10  C/me −= − × and 0 1.0 N/mxσ = . In the current work, only the first mode 

resonant frequency of the piezoelectric nanobeam is studied. Firstly, the variation of the normalized 
resonant frequency s 0/ω ω of a simply-supported piezoelectric nanobeam with beam thickness h 
under both Case 1 and Case 2 axial boundary conditions is plotted in Fig. 2. 0ω is the resonant 
frequency calculated without the consideration of surface effects and the applied electrical load. The 
beam geometry is set as b=h and L=10h. It is clearly seen from this figure that the axial boundary 
constraint has a significant influence on the vibration of the piezoelectric nanobeam, as evidenced 
by the dissimilar variation trends. For example, when the axial boundary constraint is set as 
described in Case 1, the combined effects of surfaces and electrical load increase the resonant 
frequency of the piezoelectric nanobeams. When V=-0.1 V, the influence is the largest ( s 0/ω ω  is 
about 1.2 at h=10 nm). However, under Case 2 boundary constraint, the resonant frequency can be 
either enhanced or reduced by the surface effects and the applied electrical load ( s 0/ω ω  is about 
1.01 and 0.95 when V=0.1 V and -0.1 V, respectively at h=10 nm). It is noted that the variation of 
resonant frequency with the applied electric potential in this figure indicates a possible avenue for 
frequency tuning of piezoelectric nanobeams. It is also observed that the surface effects have more 
prominent influence on the resonant frequency of a beam with smaller thickness. While such 
surface effects decrease with the increase of beam thickness h. Fig. 3 shows the variation of the 
normalized resonant frequency of a piezoelectric nanobeam against the beam thickness. The beam 
has the same geometric parameters as the one in Fig. 2 without any applied electrical load. It 
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demonstrates that the surface effects on the resonant frequencies of piezoelectric nanobeams are 
significantly influenced by the beam boundary conditions. For the S-S beam with Case 1 boundary 
constraint and the C-C beam, surface effects increase the resonant frequencies, while the trend is 
opposite for the S-S beam with Case 2 boundary constraint and the C-F beam. Again, surface effects 
are more significant for the beam with smaller thickness h and reduce with the increase of h. From 
these two figures, it is conduced that the axial boundary condition plays a substantial role in the 
transverse vibration of piezoelectric nanobeams with surface effects. Therefore, it is essential to 
consider the axial boundary constraints in predicting the vibration behavior of piezoelectric 
nanobeams. 

 
Figure 2. The normalized resonant frequency s 0/ω ω versus beam thickness h for a simply-supported 

piezoelectric nanobeam with surface effects under different axial boundary conditions 

 
Figure 3. The normalized resonant frequency s 0/ω ω versus beam thickness h for a piezoelectric nanobeam 

with surface effects under different boundary conditions 
 

As mentioned before, the applied electrical load and surface effects will induce an axial strain when 
the axial traction free condition is prescribed for the beam. As shown in Fig. 4, without the 
consideration of the surface effects, the product of this axial strain with the beam thickness is a 



13th International Conference on Fracture 
June 16–21, 2013, Beijing, China 

-7- 
 

constant, i.e., 31 11/h e V cε = − . When V=0 V, no axial strain is induced for the beam without 

considering the surface effects. However, the existence of the residual surface stress will still induce 
a relaxation strain as shown by the curve V=0 V with surface effects in Fig. 4. This relaxation 
phenomenon has been well discussed in [22] based on atomistic simulations. It is also observed in 
this figure that the surface effects lead to the size-dependency of this axial strain. 
 

 
Figure 4. Axial strain hε versus beam thickness h for a piezoelectric nanobeam under different applied 

electrical load 
 

3. Flexoelectricity on the Vibration of Piezoelectric Nanobeams 
 
Flexoelectricity is induced by non-uniform deformation or strain gradient, which becomes 
significant as the structural size scales down to nanometers. To account for this effect, the higher 
order theory of piezoelectricity incorporating the strain gradient term will be adopted in the current 
work for a C-C beam. The same Cartesian coordinate system as shown in Fig. 1 is used to describe 
a piezoelectric nanobeam with flexoelectricity. The geometry, poling direction and electric 
boundary conditions of the beam are the same as those stated in Section 2. Under Euler-Bernoulli 
assumption, the axial strain can be defined as 2 2/x z w xε = − ∂ ∂ . In the current study, we only 
consider the strain gradient ,x zε , while ,x xε is ignored due to the large length scale along the beam 
axis direction. The relevant stress and electric field are xσ  and zE , which can be expressed as [18]: 
 11 31 33 31 13 ,,  x x z z z x x zc d P E a P d fσ ε ε ε= + = + + , (12) 
where zP is polarization; 33a  is dielectric susceptibility; and 13f is the flexoelectric coefficient. In 
addition, a higher order stress 13xxz zf Pσ =  is introduced in the piezoelectricity theory. In the 
absence of free surface charges, the Gauss’s law can be written as: 

 
2

0 2 0zP
z z

ε ∂∂ Φ
− + =

∂ ∂
, (13) 

where 12
0 8.85 10ε −= × F/m is the dielectric permittivity of a vacuum. From Eqs. (12) and (13) with 

the consideration of electric boundary conditions of the beam, the polarization in the piezoelectric 
beam can be determined as: 
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 ( ) ( )2 2
0 31 13

2 2
0 33 33 33

, ,
1z

w x t w x td f VP z
a x a x a h
ε

ε
∂ ∂

= + −
+ ∂ ∂

. (14) 

It is clearly seen from this equation that polarization can be induced by flexoelectricity. The 
governing equation of the flexoelectric nanobeam is formulated from Hamilton’s principle [18]: 
 0U T Wδ δ δ− − = , (15) 

where ( )2

1
,

1 d d
2

t

x x xxz x zt
U tσ ε σ ε

Π
= + Π∫ ∫ (t is the time and Π  is the entire domain of the structure) is 

the strain energy, and 2

1

21 d d
2

t

t

wT t
t

ρ
Π

∂⎛ ⎞= Π⎜ ⎟∂⎝ ⎠∫ ∫  is the kinetic energy. The resultant axial force is 

defined as ( )/ 2

,/ 2
d

h

x x xxz zh
P b zσ σ

−
= −∫  , with the consideration of applied shear force Q0, QL and 

moment M0, ML, the work is defined as 
2

1

2

0 0 0 00
0

1 d d
2

t L

x L L Lt
L

w w wW P x M M Q w Q w t
x x x

⎡ ⎤∂ ∂ ∂⎛ ⎞= − + − − +⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎢ ⎥⎣ ⎦
∫ ∫ . With these defined quantities, 

the governing equation is derived from Eq. (15) as: 

 ( ) ( ) ( )4 2 2
* 31

4 2 2
33

, , ,w x t w x t w x tdA Vb bh
x a x t

ρ
∂ ∂ ∂

+ = −
∂ ∂ ∂

, (16) 

with ( )* 2 3 2
11 0 31 0 33 13 33/ 1 /12 /A c d a bh f a bhε ε⎡ ⎤= − + −⎣ ⎦ .  

 

 
Figure 5. The normalized resonant frequency flexo 0/ω ω versus beam length to thickness ratio L/h for a 

piezoelectric nanobeam with flexoelectricity 
 

For case study, the vibration of a clamped-clamped (C-C) piezoelectric nanobeam is investigated 
with the consideration of flexoelectricity. BaTiO3 is taken as the example material with material 
properties being 11 167.5c = GPa, 8

31 3.5 10d = × V/m and 8
33 0.8 10  V m/Ca = × ⋅ . The flexoelectric 

coefficients of BaTiO3 can be determined from experiments or atomistic simulations. Following Ref. 
[19], in which the typical value of the flexoelectric coefficient is 1-10 V, we take 13 5 f = V. The 
variation of the normalized resonant frequency flexo 0/ω ω of the piezoelectric nanobeam against the 
beam length to thickness ratio L/h is plotted in Fig. 5, in which 0ω is the resonant frequency 
calculated without the consideration of flexoelectricity and applied electrical load. The beam length 
is L=500 nm and b/h=1. When the applied electric potential is V=0 V, it is seen that flexoelectricity 
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decreases the resonant frequency of the clamped-clamped beam and this influence increases with 
the increase of L/h. The size-dependency of flexoelectricity is clearly demonstrated in this figure 
and such effect becomes negligible when the beam thickness becomes large, for example, the 
results with the consideration of the flexoelectricity approach to those from the classical theory 
when L/h=5. It is also observed that the influence of flexoelectricity on the normalized resonant 
frequency of the piezoelectric nanobeam depends on applied electrical load, as evidenced by the 
discrepancies among the results under different applied electrical load, which again indicate the 
possible frequency tuning of piezoelectric nanobeam by applying electrical load. However, such 
frequency tuning of piezoelectric nanobeams must incorporate the influence of flexoelectricity.  
 
4. Conclusions 
 
The influence of surface effects and flexoelectricity on the vibration behavior of piezoelectric 
nanobeams is investigated in the current work. Surface effects are incorporated into the modeling 
through the surface piezoelectricity model and the generalized Young-Laplace equations. In 
addition to the transverse boundary conditions, the axial boundary constraints are also considered 
for the beam with surface effects. Simulation results indicate both axial and transverse boundary 
constraints significantly influence the surface effects on the resonant frequencies of piezoelectric 
nanobeams. An axial strain relaxation is also observed under axial traction free boundary condition. 
Both applied electrical load and surface effects will affect such a relaxation phenomenon. 
Flexoelectricity is considered by adopting higher order theory of piezoelectricity. It is found that 
flexoelectric effect also has a substantial effect on the vibration of piezoelectric nanobeams. Both 
surface effects and the effect of flexoelectricity are more prominent for piezoelectric nanobeams 
with smaller thickness, which are attributed to the size-dependent properties of piezoelectric 
nanobeams. It is also observed that the resonant frequencies can be tuned by adjusting the applied 
electrical load. This work is expected to provide a better physical understanding of piezoelectric 
nanobeams and a guideline for the design of piezoelectric nanobeam-based devices.  
 

Acknowledgements 
This work was supported by the Natural Sciences and Engineering Research Council of Canada 
(NSERC). 
 

References 
[1] C.S. Lao, Q. Kuang, Z.L. Wang, M.C. Park, Y.L. Deng, Polymer functionalized 

piezoelectric-FET as humidity/chemical nanosensors. Appl Phys Lett, 90 (2007) 262107. 
[2] S.M. Tanner, J.M. Gray, C.T. Rogers, K.A. Bertness, N.A. Sanford, High-Q GaN nanowire 

resonators and oscillators. Appl Phys Lett, 91 (2007) 203117. 
[3] Z.L. Wang, J.H. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. 

Science, 312 (2006) 242–246. 
[4] W.S. Su, Y.F. Chen, C.L. Hsiao, L.W. Tu, Generation of electricity in GaN nanorods induced by 

piezoelectric effect. Appl Phys Lett, 90 (2007) 063110. 
[5] A.V. Desai, M.A. Haque, Mechanical properties of ZnO nanowires. Sens Actuators A: Phys, 134 

(2007) 169–176. 
[6] R. Agrawal, B. Peng, E.E. Gdoutos, H.D. Espinosa, Elasticity size effects in ZnO nanowires-A 

combined experimental-computational approach. Nano Lett, 8 (2008) 3668–3674. 
[7] R. Agrawal, B. Peng, H.D. Espinosa, Experimental-computational investigation of ZnO 

nanowires strength and fracture. Nano Lett, 9 (2009) 4177–4183. 



13th International Conference on Fracture 
June 16–21, 2013, Beijing, China 

-10- 
 

[8] Y.H. Zhang, J.W. Hong, B. Liu, D.N. Fang, Strain effect on ferroelectric behaviors of BaTiO3 
nanowires: a molecular dynamics study. Nanotechnology, 21 (2010) 015701. 

[9] M.E. Gurtin, A.I. Murdoch, A continuum theory of elastic material surfaces. Arch Ration Mech 
Anal, 57 (1975) 291–323. 

[10] J. He, C.M. Lilley, Surface effect on the elastic behavior of static bending nanowires. Nano 
Lett, 8 (2008) 1798–1802. 

[11] G.F. Wang, X.Q. Feng, Timoshenko beam model for buckling and vibration of nanowires with 
surface effects. J Phys D: Appl Phys, 42 (2009) 155411. 

[12] C. Liu, R.K.N.D Rajapakse, Continuum models incorporating surface energy for static and 
dynamic response of nanoscale beams. IEEE Trans Nanotechnol, 9 (2010) 422–431. 

[13] G.Y. Huang, S.W. Yu, Effect of surface piezoelectricity on the electromechanical behaviour of a 
piezoelectric ring. Phys Status Solidi B-Basic, 243 (2006) R22–R24. 

[14] Z. Yan, L.Y. Jiang, Surface effects on the electromechanical coupling and bending behaviours 
of piezoelectric nanowires. J Phys D-Appl Phys, 44 (2011) 075404. 

[15] Z. Yan, L.Y. Jiang, The vibrational and buckling behaviors of piezoelectric nanobeams with 
surface effects. Nanotechnology, 22 (2011) 245703. 

[16] Y.H. Li, B. Fang, J.H. Zhang, J.Z. Song, Surface effects on the wrinkling of piezoelectric films 
on compliant substrates. J Appl Phys, 110 (2011) 114303. 

[17] R. Maranganti, N.D. Sharma, P. Sharma, Electromechanical coupling in nonpiezoelectric 
materials due to nanoscale size effects: Green’s function solutions and embedded inclusions. 
Phys Rev B, 74 (2006) 014110. 

[18] M.S. Majdoub, P. Sharma, T. Cagin, Dramatic enhancement in energy harvesting for a narrow 
range of dimensions in piezoelectric nanostructures. Phys Rev B, 78 (2008) 121407. 

[19] E.A. Eliseev, A.N. Morozovska, M.D. Glinchuk, R. Blinc, Spontaneous 
flexoelectric/flexomagnetic effect in nanoferroics. Phys Rev B, 79 (2009) 165433. 

[20] C.C. Liu, S.L. Hu, S.P. Shen, Effect of flexoelectricity on electrostatic potential in a bent 
piezoelectric nanowire. Smart Mater Struct, 21 (2012) 115024. 

[21] T.Y. Chen, M.S. Chiu, C.N. Weng, Derivation of the generalized Young-Laplace equation of 
curved interfaces in nanoscaled solids. J Appl Phys, 100 (2006) 074308. 

[22] H.S. Park, P.A. Klein, Surface Cauchy-Born analysis of surface stress effects on metallic 
nanowires. Phys Rev B, 75 (2007) 085408. 


