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Abstract  Suppose the particles in with volume fraction c in an RVE of a particulate composite are 
separated into two groups, with volume fractions (1--1)c and c/ over the RVE, respectively, a combined 
self-consistent and Mori-Tanaka approach is proposed for the evaluation of the effective elastoplastic 
property of particulate composites. The particles in Group I and the original matrix form a fictitious matrix, 
and its mechanical property is determined with the self-consistent scheme. The RVE of the composite 
consists of the fictitious matrix and Group of particles, and its mechanical property is determined with the 
Mori-Tanaka scheme. The conventional Mori-Tanaka scheme and self-consistent scheme can be obtained as 

the two limit cases as  =1 and  =∞, respectively. The constitutive behavior of the particles in Group I is 

identical with that in Group II. The effective elastoplastic behavior of some typical particulate composites is 
evaluated, and the comparison with the experimental results demonstrates the validity of the proposed 
approach. The induced λ can serve as a parameter related to the actual property of composites and identified 
by experiment, for a more accurate evaluation of the effective elastoplastic property of particulate 
composites. 
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1. Introduction 
 
The overall property of a composite is governed by the properties of their constituents and the 
microstructures. In order to achieve the desired property of a composite, an appropriate approach 
for the evaluation of the overall property of the composites is essential. Many micromechanics 
approaches have been developed [1-8] and extensively used to evaluate the effective properties of 
composites. The homogenization approaches have also been developed for the evaluation of the 
elastoplastic or elastoviscoplastic properties of composites [9-11]. 
 
It has been shown that there might be a big gap between the effective properties of a composite 
obtained respectively with the conventional Mori-Tanaka scheme and the conventional 
self-consistent scheme [12]. Since both schemes are extensively used in the evaluation of the 
effective property of composites, a question one may ask is whether one can evaluate more 
accurately the effective property of a composite with the combination of these two schemes. A 
combined self-consistent and Mori-Tanaka approach was proposed by Peng et al [13] for the 
evaluation of the effective elastic property of particulate composites. It was shown that the 
conventional Mori-Tanaka scheme and self-consistent scheme can be obtained as the two limit 
cases of the approach. The effective elastic properties of some typical particulate composites were 
evaluated and compared with experimental results, and the satisfactory agreement between the 
computed and the experimental results demonstrates the validity of the proposed approach. 
 
In this article, the combined self-consistent and Mori-Tanaka approach [13] is extended to the 
evaluation of elastoplastic properties of particulate composites. The effective elastoplastic responses 
of some typical particulate composites are analyzed and compared with experimental results. 
 
2. Extension of Combined Self-consistent and Mori-Tanaka Approach 
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An RVE of a particulate composite consists of the matrix of mechanical property Lm and particles 
of mechanical property Lc with total volume fraction c. The particles are separated into two groups 
by introducing a parameter λ (λ ≥ 1): Group I contains particles with total volume fraction 

1(1 )c  over the RVE, and Group II contains particles with total volume fraction c/λ over the 
RVE. The effective elastoplastic property of the composite can be determined by two steps: in the 
first step, the particles in Group I are embedded in the original matrix to form the fictitious matrix 
(with equivalent particle volume fraction ĉ ), and the elastoplastic property of the fictitious matrix, 
ˆmL , is determined with the self-consistent scheme; and in the second step, the particles in Group II 

are further distributed randomly in the fictitious matrix to form the RVE, and the effective 
elastoplastic property of the composite, L , is determined with the Mori-Tanaka scheme, the 
particle inclusions in Group II should be necessarily sufficient to meet the requirement of the 
application of the Mori-Tanaka scheme. 
 
Suppose the volume of the RVE is V, the volume of the original matrix is (1 )mV c V   and the 

volume of the particle inclusions in Group I is 1(1 )cV , the volume of the fictitious matrix is 
1

(1ˆ ) (1 )m m

c
V cV VV

 
    , and the equivalent volume fraction of the particles in the fictitious 

matrix is 
11 1

ˆ (1 ) (1 ) (1 )c cV cV c V c
c


  

         
. (1) 

 
In the first step, making use of the Hill’s self-consistent scheme, the elastoplastic tensor of the 
fictitious matrix can be determined as follows by averaging the stress rate field over m̂V , i.e.,  

ˆ ˆ ˆ(1 )m m m c cc c    L L A L A , (2) 

where           * 1 * * 1 *ˆ ˆ[ ] [ ] [ ] [ ]c c m m m m      A L L : L L A L L : L L, , (3) 

and                              * 1
4

ˆm  L L : S I . (4) 

ˆmL relates the stress rate ˆ mσ and the strain rate ˆmε of the fictitious matrix by 

ˆ ˆˆ :m m mσ L ε  , (5) 

and the stress rate and the strain rate in the original matrix and the particles are determined with 

ˆ: , : ,

ˆ: , : .

c c m c c c

m m m m m m

 

 

ε A ε σ L ε

ε A ε σ L ε

   

   
, (6) 

In the second step, making use of the Mori-Tanaka scheme and keeping in mind that the RVE of the 
material is composed of the fictitious matrix and the particle inclusions in Group II (with total 

volume fraction c/λ) and the domain for averaging strain (or stress) is ˆ m c
V V V


  , the 
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corresponding expression can easily be obtained as 

                     ˆ ,c c m c c c ε A : ε σ L : ε    ,  (7) 

where             * 1 * ˆ] :[ ]c c m  A [L L L L   ,  with   * 1
4

ˆ ( )m  L L : S I , (8) 

                  
1

ˆ ˆ : : 1m c m c cc c c

  


          

L L L L A I A  , (9) 

:σ L ε  , (10) 

1

ˆ 1 : .m cc c

 


        

ε I A ε   (11) 

It can be seen easily by comparing Eq. (8) with Eqs. (3) and (4) that * *L L  so that c cA A , 
indicating that the response of the particles in Group I given by Eq. (6) is identical with that of the 
particles in Group II given by Eq. (7). This fact, on one hand, implies the consistency of the 
constitutive behavior of the two parts of the particles in the extended approach, and on the other 
hand, brings convenience to the corresponding analysis. 
 
Eqs. (9) and (11) can be reduced to the results of the conventional Mori-Tanaka scheme if λ =1 

(noticing that if λ=1, there would be no particles in the fictitious matrix), ˆm mL L . If λ is 
sufficiently large so that c/λ→0 (implying that there would be no particles in Group II), one obtains 

ˆmL L  (Eq. (9)), ˆm ε ε  (Eq. (11)), so that ˆ m σ σ   (Eqs. (10) and (5), noticing that 0σ σ   in 
the Mori-Tanaka scheme), the extended approach is reduced to the conventional self-consistent 
scheme. 

 
Thus, it is known that the conventional Mori-Tanaka scheme and the conventional self-consistent 
scheme can be obtained as the two limit cases of the proposed approach as λ=1 and λ=∞, and the 
variation of λ may provide the evaluation of the elastoplastic property varying between the result 
given by the Mori-Tanaka scheme and that given by the self-consistent scheme. In practical 
application, the introduced λ may serve reasonably as an adjustable parameter that can be associated 
with the actual properties of composites and determined by experiment. This is important because 
the mechanical properties of composites are affected by many factors such as compositions, 
microstructures, internal constraints, etc., and the fabrication of composites may inevitably involve 
various unexpected factors that also strongly affect the overall property of the composites. The 
effects of these factors could be comprehensively considered with λ. 
 
3. Constitutive Model and Numerical Algorithm 
 
3.1. Elastoplastic constitutive equation 
 
Assuming both constituents of a composite are initially isotropic and plastically incompressible, in 
the case of isothermal and small deformation, the following incremental form of the elastoplastic 
relationship can be obtained [14] 
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                                               ( ) ( )p
nz A z z   s e B  (12) 

where s and ep are deviatoric stress and plastic strain, respectively,  

                         
3

1
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z k z


 B s ,   (13) 

                   zzCkz n
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p

rr
r  ))(()( )()( ses  ,  

z

e
k

r

z

r

r






1
，  nz z z  ,  (14) 

z is generalized time that is non-negative and increases monotonically during any plastic 
deformation in terms of the following definition 

                     
)(zf

z


  ,         2 p p   e e: ,          (15) 

f(z) is a hardening function, Cr and αr (r =1,2,3) are material constants. The deviatoric elastic 
relation is 

                           
G

p

2

s
ee


    (16) 

where e is deviatoric strain tensor and G is shear modulus. The volumetric constitutive relation can 
be expressed as 

( ) 3 ( )tr Ktrσ ε      or     ( ) 3 ( )tr Ktr  σ ε ,  (17) 

where and are stress and strain tensors, respectively, and K is bulk modulus. Rewriting Eq. (15) 
as  

                           p
p

zf
z e

e





 :
2

   (18) 

and making use of the following relationships 

   
2)(

3

1
Iσσs  tr     2)(

3

1
Iεεe  tr ,  (19) 

where I2 is the identity tensor of rank two, the incremental constitutive equation can be derived 
from Eqs. (12), (16) and (17) as [14] 

                                  : σ L ε , (20) 

where            
2

4 2 2 2 2

2 (2 ) 1
2

3 (2 ) ( )

p

p p

G
 G K G

G A f z a z



e

 L I I I B
         

, (21) 
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with                     
2p

GA
G

G A



,    

zfGA
a

p





2)2(

:
1

eB . (22) 

If the particles are assumed linearly elastic, the constitutive relationship of the particles can easily 
be obtained as follows by ignoring the terms related to plastic deformation and noticing that for 
elastic material, A is sufficiently large and Gp tends to G (Eqs. (22) and (21)) 

4 2 2

2
2

3
 G K G L I I I

     
 

. (23) 

Eq. (20) can be specified as follows for the matrix and the particles in a particulate composite 

 :m m m σ L ε     and     :c c c σ L ε  (24) 

 
3.2. Numerical Algorithm 
 
For simplicity, we assume in the analysis that the particles are of spheres with identical size, if we 
further ignore the minor difference between the result obtained with anisotropic Eshelby tensor and 
that obtained with isotropic Eshelby tensor provided the plastic deformation is moderate [15], both 
the original matrix and the fictitious matrix can be approximated as overall isotropic, then the 
following Eshelby tensor for isotropic media is adopted in the analysis [10], 

][ 22422 IIIIIS  ba , (25) 

with                         bab 



 1,
)1(15

)54(2


 .  (26) 

The analysis of the response of a composite material involves the constitutive behavior of the 
original matrix and that of the particles, which are determined with Eq. (6). For a stress-controlled 
process, the numerical algorithm for the analysis of the elastoplastic response of a two-constituent 
composite is stated as follows: For the prescribed particle volume fraction c and the parameter λ, ĉ  
can be calculated with Eq. (1), and with the results obtained in the k-th iteration of the l-th 

increment of loading, such as ( )
( )( ) k
lε and of the composite, ( )

( )
ˆ( )m k

lL of the fictitious matrix, 
( )
( )( )m k
lε , ( )

( )( )m k
lσ  and ( )

( )( )m k
lL of the matrix, and ( )

( )( )c k
lε , ( )

( )( )c k
lσ and ( )

( )( )c k
lL of the particles, in the 

following (k+1)th iteration, * ( 1)
( )( ) k
l
L , ( 1)

( )( )c k
l
A and ( 1)

( )( )m k
l
A can be calculated with Eqs. (4) and (3) 

respectively, and then, keeping in mind c cA A , ( 1)
( )
k
l
L of the composite can be immediately 

obtained with Eq. (9). Given the l-th increment of stress 0
( )( ) lσ , ( 1)

( )( ) k
l
ε can be solved from Eq. 

(10), and ( 1)
( )ˆ( )m k
l
ε with Eq.(11), then ( 1)

( )( )m k
l
ε , ( 1)

( )( )m k
l
σ , ( 1)

( )( )c k
l
ε and ( 1)

( )( )c k
l
σ can be obtained 

with Eq. (6), the mechanical property of the matrix ( 1)
( )( )m k
l
L and that of particles ( 1)

( )( )c k
l
L can be 

updated with Eqs. (21) and (23), respectively, than the mechanical property of the fictitious 

matrix, ( 1)
( )

ˆ( )m k
l
L , can be calculated with Eq. (2). The iterative process continues until the following 

inequality is satisfied, 
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( 1) ( )

( ) ( )

0( 1)
( )

k k
l l

k
l

 




  
 



ε ε

ε
,      (27) 

where  is the tolerant error and =0.0001 is used in computation. After superimposing the 
derived increments on the corresponding quantities up to that after the (l-1)th increment of loading, 
one obtains 0

( )( ) lσ and ( )( ) lε  of the composite, and then starts the computation for the next 

increment of loading. 
 
3. Numerical Examples and Verification 
 
The elastoplastic behavior of some typical particulate composite materials subjected to 
tensile/compressive loading is computed and compared with experimental results. 
 
The material constants involved in the proposed approach includes elastic/elastoplastic material 
constants of each constituent and λ. For the composites consisting of purely elastic particles and 
elastoplastic matrix, the elastic property of each constituent is usually provided by material 
suppliers or can be determined with conventional test; and the plastic constants of the matrix can be 
identified with simple test (e.g., tensile test) of pure matrix; λ can then be identified by fitting 
simple testing result (e.g., σ-ε curve) of the composite. 

 
The variation of the tensile response of an Al/Al2O3 composite with respect to the volume fraction 
of Al2O3 particles is computed and shown in Fig. 1. The material constants adopted are given in 
Table 1, in which the Al matrix is assumed elastoplastic and the Al2O3 particles are purely elastic. 
The elastic constants are adopted from [16]. The plastic constants of the matrix are identified with 

the empirical relation  0.2
130 1 p      

[16], and the hardening function f(z) (in Eq.(15)) takes the 

following form 
( ) ( 1) zf z d d e      (28) 

where d and β are material constants. It can be seen in Fig. 1 that the σ - ε curve of the Al matrix 
(c=0) computed with the obtained material constants can reasonably replicate the empirical σ-ε 
curve. The ultimate strength of the composite, σu, increases with the increase of c.  

 
Table 1 Material constants of Al/Al2O3 

Constituent E (GPa) ν C1/α1, C2/α2, C3/α3 (MPa) α1, α2, α3 d, β 
Al 69 0.345 112, 25, 17.5 2500, 800, 200 1.25, 16 

Al2O3 400 0.25 -------------------- ------------------ --------- 
 

The effective σ - ε curves of c=0.34 corresponding to different λ is shown in Fig.2(a), where the σ-ε 
curve is hoisted with the increase of λ, but all the curves lie between the two bounds determined 
respectively by λ=1 and λ→�. There is a remarkable gap between the σ-ε curves evaluated 
respectively with λ=1 and λ→�. The variation of σu against λ for c=0.34 is shown in Fig. 2(b), 
where the results given by the conventional Mori-Tanaka scheme and the conventional 
self-consistent scheme are independent of λ and serve as the lower and the upper bounds, 
respectively. The results given by the combined self-consistent and Mori-Tanaka approach starts 
from that obtained with Mori-Tanaka scheme, increases with λ, and approaches the asymptotic 
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value determined with self-consistent scheme. It can be seen that the experimental result also lies in 
the region bounded by the curve with λ=1 and that with λ=∞. It can be found that the σ-ε curve with 
λ=8 can well fit the experimental result. All the curves in Fig. 1 are computed with λ=8, the 
obtained results fit well the empirical results at c=0 and experimental results at c=0.34, and the 
curves obtained at different c seems reasonable. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Experimental and computational σ-ε curves of Al/Al2O3 composite 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

(a) Effective σ-ε curves of Al/Al2O3 composite     (b) Variation of ultimate strength against λ 
   using different λ (c=0.34)                            (c=0.34) 

 
Fig. 2 Effect of λ on σ-ε curves of Al/Al2O3 composite 

 

It can be found in Fig. 2 that λ strongly affects the evaluated effective property of the composite. If 
λ changes between 1 and infinite, the evaluated effective property of the composite will change 
between the result determined by the Mori-Tanaka scheme and that by the self-consistent scheme, 
with the tendency definitely identical to that caused by the decrease of particle size, which was 
reported frequently and investigated extensively by many researchers [17-20]. It implies the 
possibility for the extended approach to describe implicitly and phenomenologically the size-effect 
of particulate composites. Suppose the volume of a RVE is fixed, given particle volume fraction c, 
the number of particle inclusions in the RVE, N, should reflect the size information of the particles. 
For instance, N should be a smaller value for larger particles, and vice versa. Suppose the particle 
volume fraction c is fixed in both Composite 1 and Composite 2, and the particles are of identical 
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spheres of diameter  in Composite 1 and diameter in Composite 2, letting N1=λ1m for 
Composite 1 and N2=λ2m for Composite 2, where m is a constant related to the volume of RVE and 
the minimal number of particles required by the application of the Mori-Tanaka scheme, one can 

easily obtain the relation between λ1 and λ2 of the two composites as  3

2 1 2 1    . It indicates 

that if λ1 for the evaluation of the effective property of Composite 1 is fixed or fitted from 
experimental data, λ2 for that of Composite 2 can be approximately estimated with the above 
relationship without necessity of being identified individually.  

 
Fig. 3 shows the capability of the present approach in the description of the effective σ-ε relation of 
the composite consisting of Al356 (T4) matrix and 15% SiC particles. The material constants 
adopted are listed in Table 2, where it is assumed that the Al356 (T4) matrix is elastoplastic and the 
SiC particles are purely elastic. The elastic constants of the two constituents are the same as those 
used by Lloyd [17]. The plastic constants of the matrix are identified by fitting the empirical 

relation  0.365
86 141.7 p   given in [17]. It can be seen in Fig. 3 that the σ-ε curve of the matrix 

obtained by the extended approach (with c=0) agrees reasonably with that given by the empirical 
relation [17]. For c=0.15 and φ=16 μm, the effective σ-ε curve obtained with the extended approach 
using λ16 =1, corresponding to the result using the Mori-Tanaka scheme, can reasonably fit the 
experimental result. Experimental results show that, even if the volume fraction of particles keeps 
unchanged, the composite with smaller SiC particle inclusions (e.g., φ=7.5 μm) exhibits larger 
resistance against irreversible deformation. The effective σ-ε curve of the composites using 

 3

1616 7.5 9.71   is shown in Fig. 3 with solid line, which agrees reasonably with the 

experimental effective σ-ε curve. The effective σ-ε curve computed with the self-consistent scheme 
is also shown in Fig. 3 for comparison.  

 
Table 2 Material constants of Alcoa X2080/SiC composite 

Constituent E (GPa) ν C1/α1, C2/α2, C3/α3 (MPa) α1, α2, α3 d, β 
Al356 (T4) 70 0.33 72.14, 31.25, 18.0 7000, 800, 200 1.75, 30 

SiC 490 0.17 -------------------- ---------------- -------- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3 Experimental and computational σ-ε curves of Al356/SiC composite 

 
5. Conclusion and discussion 

The combined self-consistent and Mori-Tanaka approach for the evaluation of the elastic 
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property of particulate composites [13] is extended to the evaluation of the elastoplastic property of 
particulate composites. Several examples are exhibited and compared with the experimental results. 
The following conclusion can be drown from the analysis: 

 
(1) The comparison between the computed and the experimental results shows that the effective 
elastoplastic property of the composites can be satisfactorily evaluated with the extended approach 
by properly choosing the parameter λ, demonstrating the validity of the extended approach. 
 
(2) The results given by the Mori-Tanaka scheme and the self-consistent scheme can be obtained as 
two bounds of that by the extended approach as the λ=1 and λ=∞, respectively, and the variation of 
λ between λ=1 and λ=∞ yields the results lying between the two bounds. 
 
(3) The constitutive behavior of the particles outside of the introduced fictitious matrix is identical 
with that of the particles inside the fictitious matrix, indicating the consistency of the particle 
behavior in the combined approach. 
 
(4) The introduced parameter λ can take into account comprehensively the effects of the factors 
such as microstructures (e.g., the size and shape of the inclusions), internal constraints (e.g., 
interfacial condition between different constituents), etc., as well as various unexpected factors 
during the fabrication of composites, which may strongly affect the overall property of the 
composites. In other words, λ can be associated with the actual property of composites and 
identified with experiment for a more accurate evaluation of the effective property of composites. 
 
(5) The approach can describe implicitly the effect of particle size on the elastoplastic property of 
composites. With the help of the baseline experimental data of a composite with the particles of a 
specified size, the mechanical properties of composites with the same constituents but different size 
of particles could be estimated approximately with the proposed approach. 
 
In this article we like to suggest a method parallel with the conventional mean-field schemes. In 
order to show more clearly the capability of the approach, we do not introduce other influencing 
factors, for example, higher-order gradients of deformation or isotropisation of tangent stiffness 
tensor, etc., to avoid blurring the advantages of the proposed approach.  
 
It should be mentioned that, in the proposed approach with the increase of λ, the obtained effective 
elastoplastic response exhibits the tendency definitely identical with the size-effect phenomenon. 
Although it is known that “such effects cannot be included in the conventional inclusion-infinite 
matrix based Eshelby problem” [21], we are still interested in this capability. It can be accounted for 
with the difference between the assumptions used in the Mori-Tanaka scheme and in the 
self-consistent scheme. It is known that, although the Mori-Tanaka scheme involves the interaction 
between mediums, when any particle is added, the matrix is always considered as the original one 
without taking into account the existing reinforcement by other particles. Thus, in mathematics, the 
particles in an RVE can be assumed necessarily sufficient and randomly distributed, which implies 
relatively large size of the particle inclusions. However, in the conventional self-consistent scheme, 
the property of the matrix is assumed to be that after all the particle inclusions are added, which 
implies sufficiently large number of sufficiently small inclusions in the RVE. Since the proposed 
approach could adjust the property of the fictitious matrix (from that of the original matrix to that of 
the matrix with all particle inclusions being added) by adjusting λ, it should be able to describe the 
particle size effect to some extend. The introduced parameter λ can, on one hand, take into account 
averagely the enforcement in the fictitious matrix, and on the other hand, related to the ratio of the 
particle size to the reference particle size, which account for why it possesses the capability of 
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describing the relative “size-effect” of particulate composites. 
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