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Abstract   
Micro mechanisms of plastic deformation and the defect structure evolution are sufficiently changing with 
the strain rate increase. It leads to non-monotonic relations between the macroscopic characteristics of metal 
strength or ductility and the structure parameters such as a grain size. Our simulations predict an inverse 
Hall-Petch relation for ultrafine-grained metals at extremely high strain rate (above 107s-1). Mechanisms of 
the homogeneous nucleation of dislocations and the mechanical twining can effectively decrease the stresses 
at strain rates up to 109s-1.  
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1. Introduction 

Materials with ultrafine-grained structure (with the grain diameters of several tenth parts of 
micrometer), as well as nanocrystalline materials, are widely investigated both theoretically and 
experimentally for the last twenty years [1,2]. This goes in parallel with the development of 
experimental technic [3], and leads to discover and investigation of some new effects specific for 
these materials. One of them is an inverse Hall-Petch relation – the decrease of the yield stress at 
the grain size decrease. All observations of this effect can be divided on two parts: deformation at 
low strain rates - usually less than 10-1s-1 [4-6], and the molecular dynamics simulation at extremely 
high strain rates - usually greater than 108s-1 [7]. Preparation and experimental investigation of the 
nanocrystalline materials is very difficult. On the other hand, the molecular dynamics is very 
limited in application to macroscopic volumes of microcrystalline and coarse grained materials. It 
does not allow one to define directly the macroscopic characteristics of the material and to carry out 
simulations of deformation of the macroscopic volumes of substance with realistic strain rates.  
 
For investigation of the internal defect structure influence on the macroscopic strength and ductility 
one can take some microscopic mechanisms proposed by theoretical investigations or molecular 
dynamics simulations and to include it in the modeling in the framework of continuum mechanics. 
Simulation results could be verified by comparison with experimental data. This way, supplemented 
by the procedure of averaging over the micro-volumes of substance, allows us to monitor the 
change of the defect structure and its influence on the strength parameters of different metals. 
 
2. Yield strength at low strain rate 
 
The yield strength y  is one of the key macroscopic parameters, which determines the strength of 

the material. It grows with the dislocation density D  increase and the grain size d  decrease, which 

are well-known effects in most polycrystalline metals and alloys. This dependences are expressed 
by the Taylor [8,9] and the Hall-Petch relations [10,11] for the barrier of dislocations gliding:  

 0y D HPGb k d        (1) 
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Here 0  includes an influence of impurities and of the Pierls relief resistance for dislocation gliding; 

G is the shear modulus, b is the Burgers vector, HPk  is the Hall-Petch constant, which is a 

characteristic of the metal. This relation is exactly satisfied until the grain size in polycrystalline 
material is higher than 1 m and at the low strain rates. Influence of the mechanical twinning on the 
resistance for dislocations gliding can be accounted in the form of the Hall-Petch relation with an 
average distance between the twins   instead of the grain size and with other constant TWk  [9].  

 
If we introduce the volume fractions of the dislocations 2

DR b  , the grain boundaries 

 3
1 1 3d d       and the twins [12]   1

1 2F e
    then the Eq. (1) takes the next form: 
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were   and e are the grain width and the twin width correspondently, which are almost constant for 

the material as well as the Burgers vector. Constants: 1k Gb , 2 ~ 3 HPk k , 3 ~ 2TWk k . As the 

volume fractions are less than unity, the yield stress is limited. Introduction of impurities apparently 
is the only way to the increase yield stress to the theoretical tensile strength value [13]. 
 

 
Figure 1 The grain size dependence of the yield strength for copper. Experimental data: 1 – [1], 2 – [17], 3 – 

[18], 4 – [19],  5 – [4], 6 – [20], 7 – [5], 8 – [6]. 
 
In microcrystalline metals ( 1μmd  ), it is often observed the abnormal Hall-Petch relation with 

HPk  different from that in the coarse-grained crystal; as a result, slope of the Hall-Petch curve is 

changing [14]. Therefore, the yield stress does not achieve the value predicted from the Eq. (2). In 
many nanocrystalline materials with d  lesser than 12 nm-15 nm an inverse Hall-Petch relation is 
observed: the yield strength decreases with the decrease of the grain size [4-6,15]. This effect is 
often related with the grain boundary sliding as an alternative mechanism of plasticity. As it was 
shown in [16], there is a barrier resistance stress by ; it is equal to the doubled external stresses, 

which must be exceeded for initiating of the grain boundary sliding. It depends on the grain size.  
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where   is the Poisson ratio of the material, which is slightly varied for different metals.  For 
activation of the grain boundary sliding one need to apply the stress exceeding 2y by  ; for copper 

and iron it is about 1GPa. Therefore, in ultrafine-grained and nanocrystalline materials the plastic 
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flow occurs only at high internal stresses. This model give a good fit with experimental results for 
different metals [16]. Fig. 1 presents the experimental observation points and the theoretical curve 
for copper in the Hall-Petch coordinates. One can see an existing of the maximum of the yield 
strength for grain size of about 12nm. Yield strength here is less than 1 GPa. 
 
3. Yield strength at high strain rates 
  
Micro mechanisms of plastic deformation and defect structure evolution are sufficiently changing 
with the strain rate increase. The high stain rate experiments demonstrate a deviation from the Hall-
Petch relation even for ultrafine grained metals. At these deformation conditions we will define 
dynamical yield strength of the material through the maximal shear stresses, which is reached 
during the high-rate deformation. Dynamical yield stress not fully determined by the internal 
stresses from different obstacles as in the quasistatic deformation conditions. At extremely high 
strain rate (above 106 s-1) it has a sufficiently dynamical nature and defined by dynamics properties 
of the dislocation and grains gliding, by the kinetics of the dislocation generation and annihilation. 
For the yield stress definition one must solve a full system of equation which describes the material 
plasticity as it was done in [21]. This system includes the equations for dislocation and grain 
boundary plasticity and the continuum mechanics equations.  

 
3.1 Dislocation plasticity model 
 
Theoretical description of the dislocation plasticity one can get using the model proposed in [22]. In 
monocrystalline metals, dislocations can glide along the limited numbers of slip planes; we shall 
numerate it by index  . Equation for plastic deformation caused by the dislocation glide [23] can be 
written as: 

  1
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Here b  is the Burgers vector of dislocations, D
  is the scalar density of dislocation (their number 

per unit square) in glide plane with index  , DV   – velocity of dislocations. These parameters fully 

determine the plastic deformation of the coarse-grained crystals. Velocity of dislocation can be 
defined from the movement equation [22]: 
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Here D ik i kF S b n   is the Pitch-Keller force (it acts on the unit length of dislocation line from the 

external stresses), Y  is the static yield stress of the material, which depends on the dislocation 
density, the grain size and the presence of different impurities [24]. 0m  is the field mass of 

dislocation, tc  is transverse sound velocity. The terms with sound velocity allows one to take into 

account an experimental fact that dislocation velocity is always limited above by the sound velocity. 
Coefficient of viscous friction B(T) is temperature dependent [25,26]. Eq. (5) had demonstrated a 
good fit with experimental data for over barrier dislocation gliding at the high rate deformation [22].  
 
For determination of the dislocation density one can write a kinetics equation in the next form [22]: 
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Here the dislocation source (the first term in the Eq. (5)) has been recorded from the energy-wise 
consideration; 0.1   is a portion of dissipated power, which is spent on generation of new defects; 

the energy 8 /L эВ b   [25] is required for generation of new dislocations (per unit of length). 

Annihilation term (the second term in the Eq. (5)) was written similar to [27]. 
 
For nanocrystalline materials one has to take into account an additional term in the kinetic equation 
(5). Dislocation core are being delocalized in the disordered grain boundary material [28], when it 
reaches any grain boundary [29]. Therefore, dislocation in nanocristalline material has a lifetime, 
which is equal to the traveling time of dislocation through the grain / Dd V  , where d is an average 

grain size. Corresponding additional term in the right-hand part of the kinetics equation (5) is the 
next: D DV d  . The proposed model was verified on the experiments at various high strain rate 

deformation conditions, including the shock wave propagation in metals [22,30]. Its application 
demonstrates a good fit with experimental data at minimum adjustable parameters. 

 
3.2 Model for grain boundary sliding 
 
The plastic deformation related with the grain boundary plasticity one can describe similar to the 
Maxwell model for a highly viscous liquid [31] with the exception of the barrier resistance stress 

by . It means that grain boundaries are elastically deformed during short intervals of time. But when 

the deformation ceases, shear stresses remain in them, although they are dumped in the course of 
time, so that after sufficiently long time almost no inertial stress remains in the boundaries, 
exception of by . Viscous force appears in the grain boundaries due to diffusion, which counteracts 

the sliding of the grains layers relative to each other; it can be characterized by a relaxation time  . 
As a result, the plastic deformation caused by the grain boundary sliding can be written in the next 
form [16]: 
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where  x  is a Heaviside function, index   numerates the possible shifting planes of the grains; 

normal vectors to these planes can be written as in . Stresses applied to corresponding plane are 

ik kn  and the stress component, which acts in the tangent direction i  to the plane, is equal to the 

convolution product ik k in  . We will denote i
 as the direction of the tangent vector corresponding 

to the maximum shear stresses applied to this plane. Then the maximal shear stress acting on the 
layer of grains can be represented as ik i ks n  

  , where iks  is a deviator of stresses. Using a linear 

approximation, one can obtain the following expression for the relaxation time of grain boundary 
sliding [16] from data of the molecular dynamics simulation [32]: 

 exp
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 (8) 

Activation volume sV  can be estimated as 3~sV b . Activation energy sU  has the same order as the 

activation energy of viscous flow in molten state of the metal [28]. 
Tensor of the full plastic deformation can be written as 
 D gb

ik ik ikw w w    (9) 
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4. Simulation results 
 

4.1 Dislocation starvation 
 

At increasing of the strain rate an over-barrier dislocation gliding occurs and the domination 
resistant force becomes a phonon drag to the gliding dislocations [23]. At the further increasing of 
the strain rate the main mechanism of strain hardening becomes the dislocation starvation - it is well 
known phenomena in the field of nanopillars and thin film modeling [33] at rapid deformation 
condition. A distinction between the bulk material and these nano-crystals is in the cause of the 
starvation. In nano-crystals there are no ordinary dislocation sources, and the plasticity is usually 
provided by several entered dislocations and by surface instabilities [33]. In the bulk materials there 
is relatively large dislocation density and active dislocation sources exist. But the maximal 
dislocation density can be estimated through critical stress for the Frank-Read sources activation: 
 FRGb L  . (10) 

Here b  ~ 1FR DL   – a base of the Frank-Read source which has the same order as an inverse 

square root of the total dislocation density D . Then, for reasonable stresses ~ 2 GPa , the total 

dislocation density is limited by the value 16 2~ 10D m  . On the other hand, the Orowan equation 

[24] gives: 
 D DbV  .  (11) 

The dislocation velocity DV  can not exceeded the transverse sound velocity 3000 m/stc  . As a 

result, we obtain the maximal strain rate at which dislocations can theoretically provide the full 
relaxation of shear stresses: 10 110 s  . In real metals sufficient part of dislocations consists of 
immobile dislocations, which is not contributing to plastic relaxation. Our calculations demonstrate 
that the dislocation starvation takes place already at 7 110 s  . Therefore, even in ultrafine crystals 
with the grain size of about hundreds of nanometers a sufficient deviation from the Hall-Petch 
relation takes place at high strain rates, and it is erroneously to extrapolate the molecular dynamics 
simulation results on microcrystalline material by experimental data obtained at low strain rate.  
 
The dislocation mechanism of stress relaxation is very limited for the strain rates exceeding 109s-1 
because of a dislocation starvation. Figure 2 demonstrates the dislocation starvation in ultrafine-
grained copper at the strain rate from 107s-1 to 109s-1. 
 

 
Figure 2 The dependence of the maximal shear stress on the origin dislocation density for copper at 

extremely high strain rates: 107-109 s-1.    
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For origin dislocation densities below 1012m-2 (an undeformed material) the yield stress is high and 
it is almost unchanged with the dislocation density decrease. One can see that there is an “optimal” 
dislocation density which corresponds to the lowest shear stress. It is proportional to the strain rate 
according to Orowan equation (11). Further increasing of the origin dislocation density results in 
the increase of the yield strength according to the Taylor hardening low (1). Increasing of the 
dislocation density during the deformation is almost absent if the origin dislocation density exceeds 
1014m-2, as it was demonstrated by our calculations with use of the Eq.(6) for dislocations kinetics. 
 
4.2 An inverse Hall-Petch relation in ultrafine crystalline copper 
 

Figure 3 presents dependence of the dynamical yield stress on the grain size (in the Hall-Petch 
coordinates) at strain rates from 2.4·108s-1 to 3.5·108s-1 with «not optimal» origin dislocation 
densities. In the coarse grained materials (grain size above 300m) the Hall-Petch relation is 
observed.  
 

(a) (b)  
Figure 3 The dependence of the dynamic yield stress on the grain size at different strain rate (a) and on the 

strain rate at different grain size (b) for copper at extremely high strain rate. 
 
The well-known inverse Hall-Petch relation is also observed for the grain size range <12 nm          
(d-1/2~0.3). But the second maximum of the dynamic yield strength corresponding to the grain sizes 
of about of hundreds of nanometers appears in this situation. Our calculations demonstrate that at 
the strain rate above 107s-1, the ultrafine-grained copper is stronger to shifting than the 
nanocrystalline copper. Existence of additional maximum in the ultrafine-grain material is 
explained by the beginning of the grain boundary sliding and by its contribution into the plastic 
deformation rate. Figure 3(b) demonstrates a linear growth of the yield strength with increasing of 
the strain rate. Growth rate is maximal for the ultrafine crystalline metals. 
 
4.3 Yield strength limitations 
 
For all high strain rates the yield strength increases with the strain rate increase. But there are 
several mechanisms limiting this growth. The homogeneous nucleation dislocation must solve the 
problem of the dislocation starvation. It can be included as an additional dislocation source in the 
dislocation kinetics equation (6): 
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where N  is a number of homogeneously nucleated dislocation per unit volume. We supposed here 
that the homogeneously nucleated dislocation loop becomes an ordinary dislocation if its diameter 
grows up to the mean distance between the dislocations. The nucleation rate of the dislocations per 
unit volume is equal to [34]: 

 0 exp GD GD
GD GD

U V
J J

kT
   

 
  (13) 

For copper activation volume 28 32.7 10 mGDV   , activation energy 4.67 eVGDU   and the 

constant 0 14 -110 sGDJ  [34]. Figure 4 demonstrates the dependence of the dynamic yield stress on 

the strain rate for different dislocation densities. One can see that homogeneously nucleation of 
dislocation effective for strain rate 108s-1-109s-1. After that efficiency of dislocation gliding 
mechanism achieve its theoretical limit.  
 

 
Figure 4 the dependence of the dynamic yield stress on the strain rate for different dislocation densities. 

 
The twinning, as an additional mechanism of plasticity, has to limit the yield strength at extremely 
high-rate deformations. But our estimates show that efficiency of twinning mechanism is only a few 
times more than the efficiency of the dislocation plasticity. Therefore, it also decreases stresses in 
only limited range of the strain rates – less than 1010s-1. 

 

4. Summary 
 
The yield strength at low strain rate is limited and can be sufficiently increasing to theoretical 
tensile strength only by the way of impurities introduction. At the strain rates above 106s-1, the 
ultrafine-grained metals have the maximum dynamical yield strength (instead of the nanocrystalline 
metals at the low strain rates). Abnormal and inverse Hall-Patch relations in the ultrafine grained 
copper were demonstrated by numerical simulations; dislocation starvation effect is related for its 
explanation. Analogous effect was detected experimentally in tantalum [35] and copper [36]. 
Mechanisms of the homogeneous nucleation of dislocation and the mechanical twinning effectively 
decrease the dynamical yield strength at the strain rates 108s-1-109s-1.  
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