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Abstract A popular cyclic plasticity model at small deformations is extended to finite deformations for 

describing the Bauschinger effect and ratchetting behaviour by considering the combined isotropic and 

kinematic hardening rules. The model is based on the multiplicative decomposition of deformation gradient 

into elastic and inelastic parts. Following, a further multiplicative decomposition of inelastic part of 

deformation gradient into energetic and dissipative parts is adopted to extend the popular Ohno-Karim 

nonlinear kinematic hardening rule. Finally, numerical examples are carried out to validate the proposed 

model under strain controlled and stress controlled cyclic loadings.  
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1. Introduction 
 
In engineering applications, engineering components are usually subjected to complex cyclic 
loading. For instance, metal forming, mechanical cutting, wheel/rail contact in high speed railway 
and aero fasteners connection, etc. Cyclic plasticity models for describing Bauschinger effect and 
ratchetting behaviour of metals associated with cyclic loading have been one of the most popular 
research topic for solid mechanics in recent years. At small deformation regime, cyclic constitutive 
model research has reaped great achievements under the effort of numerous scholars [1-9]. The 
most popular model, which can describe Bauschinger effect and ratchetting behaviour, is 
Armstrong-Frederick kinematic model (shorted as A-F model) [1]. Even though the prediction of 
ratchetting behaviour by A-F model is too high relative to the actual situation, it is still widely 
applied in engineering analysis due to its solid physical background and concise theory system. And 
after then, there have been a lot of attempts to modify A-F model to improve predicting in 
ratcheting [2-9]. Ohno-Karim model, owing to the convenience of material parameters 
determination and the reasonable prediction in ratchetting, was widely adopted to simulate cyclic 
plastic behaviour of metal materials at present. The models were mostly constructed in the frame of 
small deformation. 
 
It is must be noted that the deformation of structural components is finite and associated with finite 
rotation in practical modelling situations.. Cyclic constitutive models established at small 
deformation regime are no longer suitable for these circumstances due to without considering 
rotation effect. Recently, some constitutive models were extended from small deformation to finite 
deformation [10-24]. Among these models, two main strategies are followed. One class is 
hypo-elasticity theory which is developed by introducing a stress-like internal variable to model 
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kinematic hardening with the assumption that the stretching tensor is additively decomposed into 
the elastic part and plastic part. This theory requires adopting appropriate objective stress rate to 
establish the frame-indifference evolution equations. Alternatively, the other one is hyper-elasticity 
theory, in which the inelastic part is based on the standard Kröner multiplicative decomposition [25] 
and can be further multiplicatively decomposed into energetic and dissipative parts [15]. In 
hyper-elasticity theory, a strain-like internal variable is introduced to model kinematic hardening. 
The requirement of this strategy is to establish all evolution equations in the same configuration. 
For the first strategy, it has been shown that the rate form model for elastic response is integrable 
[18, 26] only in form of the logarithmic rate. Therefore, some unreasonable responses in elastic 
behaviour, such as shear oscillatory phenomenon and the nonzero work in a hysteretic loop, may 
appear. To avoid the nonzero work in elastic response, a continuum mechanical extension of A-F 
type kinematic hardening rule can be achieved naturally motivated by a typical rheological model 
description. However, as so far only A-F model is extended in both of the two strategies.  
 
In the present work, the Ohno-Karim model is firstly extended from small deformations to finite 
deformations based on the hyper-elasticity theory. Some numerical examples were provided to 
display the prediction in Bauschinger effect and ratchetting behaviour under strain controlled and 
stress controlled cyclic loadings, respectively. 

 

2. Continuum extension of Ohno-Karim model at finite deformations 
 
2.1. Kinematic 
 
In order to model the inelastic response of materials, the deformation gradient F may be classically 
multiplicatively decomposed as  

peFFF                                 (1) 
where, pF represents the local inelastic distortion of material due to “plastic mechanism”, and this 

local deformation carries the material from reference space ( ~ ) to structure space ( ̂ ); 
eF represents the subsequent stretching and rotation, and it maps material element from structure 

space ( ̂ ) to current space ( ) (see Fig. 1) [25]. 
 
Following, pF can be further multiplicatively decomposed into energetic part peF and dissipative 
part piF [15]. 

pipep FFF                               (2) 
where, piF maps material element from reference space into intermediate configuration of kinematic 
hardening(


); and peF maps material element from intermediate configuration(


) into structure 

space( ) (see Fig. 4) [15, 24]. 
Three right Cauchy-Green tensors are given by 

FFC T ,  
1

 pTpeTee CFFFFC ,  
1

 pipTpipeTpepe FCFFFC   (3) 
with 

pTpp FFC                              (4) 
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Figure 1. Elastic-inelastic decomposition of the kinematics deformation 

 

2.2. Helmholtz free energy 
 
Similar to the small deformation regime and based on the requirement of material objectivity, the 
Helmholtz free energy is additively decomposed into three parts 

     pisopekinee   CC                    (5) 

where e represents the standard energy associated with intermolecular interactions; kin is a 

defect-energy associated with plastic deformation; and  piso  represents the additional amount of 
stored energy related to isotropic hardening, where p is accumulated plastic strain. 
 
2.3. Clausius-Duhem inequality 
 
Inspired by the existing work [21, 23], we derive the constitutive equations of Ohno-Karim model 
in a continuum method in this paper. The derivation is based on the requirement of the 
Clausius-Duhem inequality. 
 
For isothermal process, the reduced Clausius-Duhem inequality is 

0
2

1
: CS                              (6) 

whereS is the second Piola-Kirchhoff stress tensor;  : represents the inner product of tensors. 
 
For Ohno-Karim kinematic hardening rule, the kinematic free energy term is given by 

  1 N
N

i

pe
i

kin
i

kin C                      (7) 

with 
pe

i

Tpe
i

pe
i FFC                              (8) 

and 
1

 pi
i

ppe
i FFF                             (9) 

Eq. (9) indicates that the form of multiplicative decomposition for pF is not exclusive. 
 
Combing Eq. (7) and Eq. (5), yields  

     piso
N

i

pe
i

kin
i

ee    CC                      (10) 
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Substituting Eq. (10) into Eq. (6), the Clausius-Duhem inequality can be rewritten as 

0::
2

1
: 












  p
p

isoN

i

pe
ipe

i

kin
ie

e

e

 
C

C
C

C
CS               (11) 

According Eq. (3),   
111 

 pTppTppTpe FCFFCFCFFC                 (12) 
Furthermore, by adopting the two identities, gives 

111 
 pppp FFFF  ,  

TppTpTp 
 FFFF               (13) 

Combing Eq. (12) and Eq. (13), eC is derived as  
pepTpeTpe LCFCFCLC 

 1                   (14) 

where 
1

 ppp FFL  is the plastic velocity gradient. 
 
In the same process,  

pi
i

pe
i

pi
i

pTpi
i

pe
i

Tpi
i

pe
i LCFCFCLC 

 1                (15) 

where 
1

 pi
i

pi
i

pi
i FFL  is the so called “inelastic” plastic velocity gradient. 

 
Considering the symmetric property of tensor functions e and kin

i [23] 

  p
e

e
epe

e

e

D
C

CLC
C

:: 












 

           (16a) 

  pi
ipe

i

kin
ipe

i
pi
i

pe
ipe

i

kin
i D

C
CLC

C
:: 













 

                   (16b) 

where pD and pi
iD are symmetric part of pL and pi

iL , respectively. 

Moreover 
1

2

1 
 pTpp FCFD  ,  

1
 pi

i
pTpi

i
pi
i FCFD                   (17) 

By Eqs. (14)- (17), the Clausius-Duhem inequality (11) yields the final form 

 10:2

:22
2

1
:2

1



















































Np
p

isoN

i

pi
ipe

i

kin
ipe

i

p
N

i

Tpe
ipe

i

kin
ipe

ie

e
eTp

e

e
p









D
C

C

DF
C

F
C

CCF
C

FS

   (18) 

According to the Coleman-Noll procedure, the second Piola-Kirchhoff stress tensor can be defined 
as 

Tp
e

e
p 




 F
C

FS
1

2                          (19) 

Furthermore, the so-called Mandel stress M , kinematic Mandel stress kinM , back stress χ and 
isotropic deformation resistance R are defined as follows: 

e

e
e

C
CM







2                             (20) 

and 


N

i

kin
i

kin MM                             (21) 

with 
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kin
i

kin
ipe

i
kin
i C

CM






2                           (22) 

and 


N

i
iχχ                              (23) 

with 
Tpe

ipe
i

kin
ipe

ii F
C

Fχ






2                          (24) 

and 

p
R

iso







                              (25) 

In general, R can be written in the Voce’s exponential form 
 )exp(1 bpQR                              (26) 

where Q and b are nonnegative material parameters. 
Finally, the Clausius-Duhem inequality reduces to the form 

  0::   pR
N

i

pi
i

kin
i

p DMDχM                   (27) 

The evolution equations of Ohno-Karim model can be given by 

χM

χM

M
D










D

D
yp

F
                          (28a) 

   
ii

pkin
i

i

i
i

kin
iii

pi
i u

c

b
fHbu  KDMMD :               (28b) 


3

2
p                                (28c) 

with the yield function 

 RF y
D

y  
3

2
χM                         (29) 

where the superscript D denotes the deviator of a tensor, i.e.  1AAA trD

3

1
 . 

and the plastic multiplier is determined by the Kuhn-Tucker conditions  
0 ,  0yF ,   00  yy FifF                     (30) 

In Eq. (28b), ib and ic are nonnegative kinematic parameters; H and are Heaviside function and 

Macauley operator, respectively; if represents the critical surface for i-th back stress which is 

defined by 
2

2











i

i
ii b

c
f χ                            (31) 

And forther more 

i

i
i χ

χ
K                                (32) 

By the foregoing equations 
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iiiyy
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i

kin
i

p

u
c

b
fHbuF

Ru
c

b
fHbu

pR

2

2

:
3

2

3

2
:

::

MKD

MKDχM

DMDχM











   (33) 

Based on the foregoing statement, Eq. (33) is nonnegative can be obtained directly. Thus, the 
Clausius-Duhem inequality is satisfied. 
 
However, it should be noted that the constitutive equations (19), (28) and (29) are not defined in the 
same configuration. The second Piola-Kirchhoff stress (Eq. (19)) is defined in the reference 
configuration; Eqs. (28a) and (28b) act in the structure configuration and the intermediate 
configuration of kinematic hardening, respectively; Eqs. (28c) and (29) are scalar equations [23]. In 
order to satisfy the basic requirement of constitutive model, the evolution equations (28a) and (28b) 
are transformed to the reference configuration, in the following. Obviously, the yield function is 
also rewritten in term of quantities defined in the reference configuration.  
 
2.4. Representation in the reference configuration 
 
It has been proved that the second Piola-Kirchhoff stress tensor is only the function of C and pC  
[23], namely 

 pCCSS ,
~

                            (34) 

A new back stress tensor iΧ defined as a pullback of iχ by p
iF , i.e. 

Tpi
ipe

i

kin
ipi

i

Tp
i

Tpe
ipe

i

kin
ipe

i
p

i

Tp
ii

p
ii










 F
C

FFF
C

FFFχFΧ
 111

22     (35) 

also is the function of pC and pi
iC only [23], namely 

 pi
i

p
ii CCΧΧ ,

~                          (36) 

It means that the back stress tensor iΧ is defined in the reference configuration. Then, the total back 

stress is 


N

i
iΧΧ                            (37) 

Further, according to Eq. (17), it can be obtained that 
ppTpp FDFC 2 ,  pi

i
pi
i

Tpi
i

pi
i FDFC                  (38) 

 Thus, the evolution of pC and pi
iC  have the form 

DD

pD
p

D

D
Tpp

YY

CY
F

χM

χM
FC

:
22   




                   (39a) 

 

  pi
i

kin
iii

p

i

i
iii

pi
iii

pkin
i

i

i
i

kin
iii

Tpi
i

pi
i

u
c

b
fHbu

u
c

b
fHbu

CYKD

FKDMMFC


























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:2

:2

           (39b) 

with 
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 pi
i

pp CCCYΧCCSY ,,
~ ,   pi

i
pkin

ii
pkin

i CCYΧCY ,
~             (40) 

and 
2

2











i

i
ii b

c
f χ ,  

i

i
i χ

χ
K                      (41) 

Clearly, all constitutive equations are represented in terms of the symmetric tensorC , pC  and pi
iC  

and the plastic multiplier . And the yield function is 

 RF y
DD

y  
3

2
: YY                        (42) 

Kuhn-Tucker conditions are as following 
                         0 ,  0yF ,   00  yy FifF                      (43) 

For numerical examples to be discussed in the follow section, the specific form of the second 
Piola-Kirchhoff stress and back stress can be given by the well-known neo-Hookean form [23], i.e. 

      eeeee tr CCCC detln21det
4

detln3
2




      (44a) 

   pe
i

ipe
i

ikin
i

c
tr

c
CC detln

2
3

4


                 (44b) 
where and are the Lamé constants, and ic is the kinematic hardening parameter. 

Thus, the corresponding constitutive relations for S and iΧ are derived 

     1111
1detdet

2





 CCCCCS pp            (45a) 

 11

2


 ppi

i
i

i

c
CCΧ                          (45b) 

It should be noted that Ohno-Kairm model reduces to A-F model when 1iu , and reduces to 

Ohno-Wang model when 0iu  in Eq. (39b), respectively. 

 

3. Numerical examples 
 
The prediction ability and stability of A-F model at finite deformations had been investigated 
[21-23]. In this section, some numerical examples were carried out under strain controlled and 
stress controlled cyclic loadings, respectively.  
The material parameters adopted is shown as table 1(parameters of Q and b are set to be zero as 
without considering isotropic hardening). 
 

Table 1. Material parameters used in the proposed model 

N=11, E=202GPa, v=0.33, σy=240MPa, Q=200, b=2.5, ui=0.2; 
(1)=4000,　(2)=1052.6,　(3)=396.8,　(4)=200.4,　(5)=93.5,　(6)=50.1,　(7)=32.7,　(8)=22.9,
(9)=16.8,　(10)=12.6,　(11)=1.0; 
r(1)=1.29, r(2)=4.83, r(3)=6.39, r(4)=5.42, r(5)=25.3, r(6)=30.8, r(7)=67.7, r(8)=66.7, r(9)=65.6, 
r(10)=111.4, r(11)=5.0 (MPa). 

 

It should be noted here 
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iii rc 
3

2
 ， iib                            (46) 

The strain and stress at finite deformation modeling is logarithmic strain (true strain) and Cauchy 
stress, i.e. 

Vε ln ,  TFSF
F

σ
det

1
                       (47) 

with 
TFFV                                 (48) 

 

3.1. Cyclic straining  
 
3.1.1. Uniaxial tension-compression 
 
In the section, Capacity of the proposed model describing Bauschinger effect is investigated. For 
finite deformation modeling, it can be controlled by 

e

e

00

00

001 
F ,  03322  SS                       (49) 

where   is the applied load, and the unknown e can be determined through Eq. (49).  
 
The stress-strain curves (1 cycle, with 03935.006487.00:  ) are shown as follows: 
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  (a)                                    (b) 
Figure 2. Uniaxial tension-compression under cyclic straining: (a) without isotropic hardening, (b) with 

isotropic hardening. 
 

Figure 2 shows the stress-strain curves in one loading cycle under strain controlled. It is found that 
Bauschinger effect in loading-unloading cycle is reasonably reproduced even though in a relative 
large strain regime (maximum strain is up to 64.87%). Comparing figure 2(a) and 2(b), it is shown 
that if isotropic hardening is considered, the strain hardening process can be well simulated.  
 
3.1.2. Simple shear 
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When shear deformation is very large, shear oscillatory phenomenon will appear if the unreasonable 
finite deformation frame is adopted. It is very important to validate the prediction in shear 
deformation case for a developed model at finite deformations.   
 
For simple shear case, deformation gradient can be expressed as 

e

F

00

010

01 
 ,  033 S                          (50) 

where   is the load, and the unknown e can be determined through Eq. (50).  
 
The stress-strain curves (1 cycle, with 05.005.00:  ) are shown as follows: 
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  (a)                                   (b) 
Figure 3. Simple shear under cyclic straining: (a) without isotropic hardening, (b) with isotropic hardening. 

 
It is shown from Figure 3 that no shear oscillatory phenomenon appears in simple shear case in a 
relative large strain regime, including with and without consider isotropic hardening cases. 

 

3.2. Cyclic stressing  
 
The prediction ability of ratchetting behaviour is investigated in this section. The loading cases 
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  (a)                                   (b) 
Figure 4. Uniaxial tension-compression under cyclic stressing: (a) without isotropic hardening, (b) with 

isotropic hardening. 
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  (a)                                   (b) 
Figure 5. Simple shear under cyclic stressing : (a) without isotropic hardening, (b) with isotropic hardening. 

 
It is shown from Figure 4 that the presented model can reproduce ratchetting behaviour, regardless 
of uniaxial tension-compression or simple shear case. Moreover, the ratchetting strain exhibits a 
constant evolution rate without isotropic hardening; however, the evolution rate of ratchetting strain 
decreases as isotropic hardening is considered, which is a good agreement with constitutive models 
at small deformation [7]. 
 

4. Conclusions 
 
Cyclic models at finite deformations were derived based on hyper-elastic theory. The deformation 
gradient is first additional multiplicatively decomposed into elastic and inelastic parts; inelastic part 
of deformation gradient is further decomposed into energetic and dissipative parts. Based on the 
frame of finite deformation, the cyclic constitutive model, combining isotropic hardening and 
Ohno-Karim nonlinear kinematic hardening rules, was proposed to describe Bauschinger effect and 
ratchetting behaviour. The proposed constitutive equations had been proven to satisfy 
Clausius-Duhem inequality. Tension-compression and simple shear simulations under cyclic 
stressing and straining were performed to validate the proposed model. 
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