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Abstract  In the cracks contained in such materials as metals under the action of corrosive media, 
degrading polymers and ceramics (for example, HTSC-ceramics), gas-saturated rocks, etc., gas can be 
accumulated. For a penny-shaped crack in an unbounded elastic medium and for a thin penny-shaped 
delamination under the surface of a half-space, as well as for similar cracks-strips, in a new uniform way – 
on the basis of the energy approach and with the use of Clapeyron theorem – kinetic equations are derived 
describing the growth of specified defects under gas diffusion into them. The analysis of the reasons leading 
to identity of the equations named, allows (under some conditions) to extend the results obtained for these 
problems to a number of other important cases: cracks on the interface of an adhesive joint of two pliable 
half-spaces with different mechanical and diffusion properties (with the interface being permeable as well as 
impermeable), the account of anisotropy, etc. It is shown, that exactly the same reasons (and under the same 
restrictions) make it possible to extend to the same cases the results obtained earlier for growth laws of a 
penny-shaped crack in an unbounded elastic medium versus laws of gas inflow into it as well. 
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1. Introduction 
 
One of the models of crack growth as a gas is accumulated in the crack according to the diffusion 
mechanism (in what follows, a “diffusion” crack), which, for example, is typical of the process of 
structural steel hydrogenizing, was formulated and justified in [1] (different approaches are 
represented, for example, in [2, 3, 4, 5]). Later, in [6, 7, 8, 9, 10], this model was developed and 
generalized in different directions. In what follows, we analyze the derivation of the kinetic 
equations for this model, which allows for better understanding of the role and the action 
mechanism of its principal factors and also for showing the directions of extrapolation of the earlier 
results to different cases. 
 
2. Derivation of kinetic equations 
 
Let obtain kinetic equations for a penny-shaped crack in an infinite elastic space and for a circular 
crack, which is a delamination from the boundary of the half-space under gas diffusion into them 
(Fig.1) in a uniform way. 

 
Fig.1. 

First we derive expressions for the case of a gas influx into the crack. Since the problem on a 
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penny-shaped crack in infinite space is symmetric about the crack plane z = 0 ([6], p. 828), it 
suffices to consider the problem in the half-space z ≤ 0. We assume that the process is 
quasistationary ([1]; [9], p. 120) and take the axial symmetry of the problem into account. Then, for 
the unknown gas concentration c(ρ, z, t), where ρ is the radial coordinate in the cylindrical system 
of coordinates, in the half-space z ≤ 0, we obtain the mixed problem from the theory of harmonic 
functions: 
 
           Δc = 0,  z ≤ 0;                 c|z = 0 = 0,  ρ ≤ r(t); 
 ∂c/∂z|z = 0 = 0,  ρ > r(t);         c|z = ∞ = c∞   
 
where time t is a parameter. Subtracting the equilibrium state c = c∞, we obtain 
 
               Δc = 0,  z ≤ 0;                     c|z = 0 = – c∞,  ρ ≤ r(t);  
 ∂c/∂z|z = 0 = 0,  ρ > r(t);             c|z = ∞ = 0 (1) 
 
This mixed problem of potential theory is formally equivalent to the contact problem on the 
indenta- 
tion of a rigid die, that is circular in cross-section and has a smooth bottom, in to an elastic isotropic 
half-space ([11], p. 385, formula (11.6.8) and later). Taking use of the solution of the latter contact 
problem we obtain for the density q(ρ, t) of the gas diffusive flux into the crack 
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The total flux through the surface z = – 0, ρ < r  is 
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For the delamination problem, the obtained quantity Q– is simultaneously the total gas influx Q into 
the crack. But, for the case of a crack in infinite space gas influx goes through the lower and upper 
surfaces of the crack and is equal to  
 
 Q = Q– + Q+ = 2Q– = 8c∞Dr (3) 
 
Combining Eq. 2 and Eq. 3, we write 
 
 Q = N⋅4c∞Dr (4) 
 
where N is the number of “gas transmitting” surfaces of the crack. 
Taking into account the expression Q/k = dn(t)/dt, where k is the coefficient of gas recombination in 
the crack (in the case of hydrogen, k = 2, because, on the crack surface, the protons melted in the 
metal recover to the atomic hydrogen which, flowing inside the crack, recombines into molecular 
hydrogen) and n(t) is the number of gas moles in the crack, we can rewrite Eq. 4 in the form 
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 dn(t) = 4Nc∞Dr dt/k (5) 
 
From the equation of state for the ideal gas (the Mendeleev–Clapeyron equation), we have 
 
 pV = RTn(t) (6) 
 
where p is the gas pressure inside the crack and V is the crack volume. 
Expressing n(t) from Eq. 6 and substituting into Eq. 5, after the replacement dt = dr/u, we obtain 
 
 d(pV) = (4Nc∞DRT)rdr/(ku) (7) 
 
The Clapeyron theorem for linear media ([11], p. 160) implies that 
 
 U = pV/2,  pV = 2U (8)  
 
where U remains the elastic energy of the body. 
We introduce G, which is the elastic energy release rate or the “crack-moving force” ([12], p. 71, 
formula (3.12) and further) or the “force of resistance to the crack propagation” ([11], p. 686) or the 
“energy flux towards the crack vertex”, the “intensity of released elastic energy” ([3, pp. 28–30, 
p. 51), or the “strain energy release rate” ([13], p. 119). For a linearly elastic body, all these 
quantities, as well as the Γ-integral ([14], Chapter 1, Sec. 1), as well as the J-integral, coincide ([15], 
pp. 107–116). By definition ([12], pp. 73–74, formulas (3.21)–(3.23)), we write 
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where U is the elastic energy of the body and S is the crack area. 
Under the axisymmetric extension of a penny-shaped crack, we have dS = 2πrdr, and 
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If the dependence of U (or of V , which is the same in the linear case, as it follows from Eq. 8) on r 
is power-law, i.e. 
 
 U ∼ rm (10) 
 
then 
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Substituting Eq. 11 into Eq. 8 and then into Eq. 7, we obtain 
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When a crack grows really, its propagation rate cannot be arbitrary, but, according to the kinetic 
diagram of static fracture strength at each time instant, is determined by the current value of the 
stress intensity factor on its contour or by the current energy release rate G. Thus, to derive the 
kinetic equation, we must assume in Eq. 12 that the the crack propagation rate u is the function of G 
determined by the kinetic diagram of static fracture strength, u = u(G). This is that gives the desired 
kinetic equation, expressed in variables G и  r, which, by the way, does not contain time t 
explicitly. 
But what is the real, actual character of the dependences U(r), V(r)? For a penny-shaped crack 
under internal pressure in an infinite body, we have V = V(r, p, E, ν), and it follows from dimension 
considerations that V ~ r3p/E (the exact formulas see in ([16], p. 548, formula (10.131)). In this case 
m = 3, N = 2, and Eq. 12 becomes 
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In the case of a thin parallel-to-the-boundary impenetrable delamination of thickness h from the 
half-space, the problem is reduced [9] to the problem of axisymmetric bending of a circular plate 
fixed on the boundary under the action of uniform pressure, V = V (r, p, D0), and it follows from 
dimension considerations that V ~ r6p/D0 (the exact formula is ([9], Eq. 12)). Thus, here we have 
m = 6 and N = 1 and Eq. 12 becomes 
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which coincides exactly with the similar Eq. 13. 
 
3. Kinetic equation integral. Step-like kinetic diagram 
 
Eq. 12 can be easily integrated 
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 When  r → ∞,  ln(r/ro)2 → ∞  ↔  [α/u(G) – G] → 0 
 G → G∞:  u(G∞) = α/G∞, u → u∞ = u(G∞) (15) 
 
For metals and rocks kinetic diagram u(G) is nearly step-like (Fig. 2). In this case it follows 
from Eq. 15 that 
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if  α/GSCC < u*, then G∞ = GSCC,  u∞ = α/GSCC,  
if  α/GSCC > u* → u∞ = u*, G∞= α/u*  

 

Fig. 2 
 
4. Example: life-time evaluation of a massive piece of structural steel with a 
penny-shaped crack under hydrogenation 
 
We use these results to analyze the kinetics of a penny-shaped crack in a bulk sample of low-carbon 
low-alloy steel in hydrogenation. We simulate a sample as infinite elastic medium and assume that 
the material has the u(G) diagram of threshold type (which is close to reality). 
The process of crack development consists of two stages: incubation period, ti (gas accumulation in 
the stationary crack), followed by a period of growth (movement) tm. 
During the period of incubation, r = r0 = const. Turning back in (2.16) from dr2 to rdr, dividing both 
sides by r, substituting k = 2, substituting dr/u on dt, and r on r0 and integrating, we obtain 
 
 G = 3c∞DRTt/(πr0) (16) 
 
The incubation time is determined by the achievement of G its critical value GISCC, which gives 
 
 ti = πr0GISCC /(3c∞DRT) (17) 
 
In the literature they give the values not for GISCC, but for the corresponding SIF KISCC, which is 
related to GISCC by the Irwin formula GISCC = (1 - ν2)K2

ISCC/E. For the concentration c∞ of the 
hydrogen dissolved in the metal the literature values given are for the so-called "weight parts" (the 
ratio of the weight of hydrogen per unit volume to the weight of the metal containing it), we denote 
this quantity by c∞, while c∞ has the dimension of mol/volume and is numerically equal to c∞g, 
where g is the steel density. Therefore, passing in Eq. 17 from GISCC to KISCC and from the c∞ to c∞ 
we finally obtain 
 
 ti = π(1 - ν2)K2

ISCC⋅r0 /(3c∞g DRTE) (18) 
 
During the period of growth with the u(G) diagram of threshold-type G = const = GISCC. 
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Substituting this into (2.16), substituting k = 2, dividing both sides by dr2 and replacing c∞ with c∞ 
and GISCC with KISCC, we obtain 
 
 u = 3c∞DRT/(2πGISCC) = 3c∞gDRTE/[2π(1– ν2)K2

ISCC] = const (19) 
 ti = r0/(2u) (20) 
 r = r0 + (t - ti)⋅u = r0 + tm⋅u (21) 
 
We assume room temperature T = 2730K and use the default values for the universal gas constant 
R = 8.31 J/(mol⋅grad) = 8.32⋅107 erg /(mol⋅grad) ([17], p. 153 [18], p. 151) and typical values for 
density and elastic constants of low-alloy steel g = 7.8 g⋅cm-3 ([17], p. 40), E = 2⋅104 kg⋅mm-2, 
ν = 0.3 ([17], p. 116).  We also know that D = 10-3 mm2s-1 [19], KISCC ≅ 120 kg⋅mm-3/2 [20], and the 
values of c∞ can reach 10-5 parts by weight [21]. In addition, we assume that the initial radius of the 
crack r0 is equal to r0 = 10 mm. 
 

Table 1. The parameters values taken for calculations 

T0 [K] R [J/(mole⋅K)] g [g⋅cm-3] E 
[kG⋅mm-2] 

ν D 
[mm2c-1] 

KISCC 
[kG⋅mm-3/2] 

c∞ r0 [mm]

273 8.31 7.8 2⋅104 0.3 10-3 120 10-5 10 
 
Substituting these values in Eq. 19, we obtain 
 
u ≅ 10-5 mm/s 
 
Thus, the crack front velocity turned out to be of the order of 10-5 mm/s and according to Eq. 20, 
incubation time 
 
ti = r0/(2u) = 10 mm/(2⋅10-5 mm/s) = 5⋅105 s ≅ 1.5⋅102 h = 150 h ≈ 6 days and nights. 
 
If the front crack after the start begins to move at a speed of about 10-5 mm/s, then the radius equal, 
for example, r = 50 mm, will be according to Eq. 21 achieved through 
 
tm = (r - r0)/u =  (50–10) mm/(10-5 mm⋅s-1) = 40⋅105 s ≅ 1.1⋅103 h ≈ 46 days and nights. 
 
As can be seen from Eqs. 19-21, the values of durability can vary by orders of magnitude depending 
on the concentration of the gas in the metal. 
In the case of the u(G) diagram of general form, as well as in the presence of tensile stresses and 
taking into account a number of additional physical and physical-chemical factors [5] the range of 
possible values of life can range from several hours up to many hundreds of years. 
 
5. Main assumptions and the scope of the equation obtained above 
 
To specify the scope of the kinetic Eq. 12 and the results obtained from this equation earlier in [1, 6, 
7, 8, 9], we list the assumptions used above in its derivation: 
1. The medium is homogeneous and diffusively linear, see Eq. 5. 
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2. The gas is thermodynamically ideal (obeys the Mendeleev–Clapeyron equation of state), see 
Eq. 6. 
3. The medium is mechanically linear, see Eq. 8. 
4. The dependence of V , and hence of U, on r is power-law, see Eqs. 10, 11. 
As to the last assumption, it follows from dimension considerations that, in any case, the expression 
for the volume V of the crack must have the form 
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i

ih
rf
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where hi are the problem parameters of dimension of length (except for r), νi are the dimensionless 
parameters (except for r/hi), f(r/hi, νi) is a function determined by the geometry and physics of the 
problem. 
Thus, condition 4 means that either the problem does not contain any geometric parameters other 
than the crack dimensions (as in the case of an infinite homogeneous body) or all the parameters of 
dimension of length in the formula for the volume V are combined into a single factor (as in the 
case of delamination from the half-space). 
On the one hand, this implies that all the main results must remain valid if the complication of the 
problem is not related to the appearance of new parameters of dimension of length. For example, 
these are (under some conditions) the following cases: cracks on the adhesion boundary between 
two compliant half-spaces with different mechanical but equal (close) diffusive properties (in the 
case of an impenetrable boundary, the diffusive properties can also be different); the case of taking 
the anisotropy into account; delamination from the membrane half-space; etc. 
Since the argument in [8] is also based on the same assumptions 2–4, the results in [8] can be 
generalized (under the same conditions) to all problems where the above assumptions remain valid. 
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