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Abstract Liquid crystals and quasicrystals are fascinating phases of modern physics and 

chemistry, they are also important materials in current and potential applications. The liquid 

crystals belong to intermediate phase between fluids and solids in macroscopic sense, they 

present behaviour of anisotropic fluids, i.e., they behave both characters of conventional 

fluids and anisotropic elastic solids. The quasicrystals present unusual mechanical and 

physical properties due to the atomic arrangement being quite different from that of 

conventional crystals. To describe the mechanical behaviour of quasicrystals, one must 

introduce two different displacement fields, this leads to two different strain tensors and two 

stress tensors. This paper reports some results in the study on crack and fracture problems of 

liquid crystals and quasicrystals. The nonlinear fracture analysis is important for the both 

materials. However there is fundamental difficulty in the analysis due to lack of plastic 

constitutive equations for them. Some physical models and relevant mathematical methods 

are developed to overcome the difficulty, and some results have been obtained, which are of a 

development of fracture theory of conventional structural materials. 
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1. Introduction 
 

Liquid crystals, in macroscopic sense, are anisotropic fluids. Therefore they 

belong to an intermediate phase between fluids and crystals. The mechanical 

behaviour of liquid crystals presents the character of both fluids and solids. 

There are various types of liquid crystals, here we discuss the mechanics only for 

nematic, smectic and columnar liquid crystals. 

Different from the behaviour of both fluids and solids, the deformation and 

motio of liquid crystals should be introduced a vector named director  n , ,x y zn n n  

apart from displacement vector  u , ,x y zu u u  and velocity vector  , ,x y zV V V V .In 

addition, the constitutive equation of liquid crystals is different from either 

generalized Newton’s equation or generalized Hooke’s equation. For example, for the 

nematic liquid crystals, we have constitutive law [1] 
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in which F  is the free energy of the system, kn  the component of the director 

mentioned above, p  the pressure,   the fluid viscosity, iV  the component of 

velocity and 
ij  the unit tensor, respectively. The free energy consists of three parts: 

first one arising from bulk deformation (by the displacements), second one arising 

from deformation due to curvature, another arising from the coupling between 

distortion and curvature, i.e.,           

e c ecF F F F                           (2) 

where 

1

2
e ijkl ij klF C                            (3) 

denotes the conventional elastic strain energy, or the Cauchy strain energy, 
ijklC the 

elastic constants, 
ij the Cauchy strain tensor, and  

2 2 2

1 2 3

1 1 1
( ( )) ( )) ( ))

2 2 2
cF K div K rot K rot    n n n n n          (4) 

the Frank energy due the curvature, and 1 2 3, ,K K K  the modulia of Frank 

deformation, in addition  

ecF   Deformation energy of coupling between Cauchy strain and Frank strain   (5) 

For the most cases ecF  can be omitted. 

The equations of motion include the equations of momentum conservation, 
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equation of mass conservation 

( V) 0div
t
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                                   (7) 

and equation of entropy conservation if there is no dissipation 

( V) 0
S

div S
t


 


                                   (8) 

where  denotes the mass density of the matter, S the entropy. If there is dissipation 

the equation (8) should be changed, but the discussion is omitted here. From the 

above simple introduction, we can mind that the equations of the liquid crystals are 

quite complicated. Some detail for the solutions will be introduced later. 

For smectic liquid crystals, the director stands for 

n , ,1z zu u

x y
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                              (9) 

where zu  is the displacement component in the direction normal to the layers of 



 

 

smectics, and 0x yu u  . 

For columnar liquid crystals, the director stands for 

n , ,1
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                              (10) 

where ,x yu u  are the displacement components along the directions ,x y respectively, 

and  0zu  . 

Quasicrystals belong to another fascinating phase of condensed matter, first 

observed in 1982[2]. Macroscopically their main feature is that there are two different 

displacement fields, one is the phonon field u , according to the terminology of 

physics, which is similar to the displacement field in the classical elasticity under the 

long-wave length approximation, the other is the phason field which is new concept 

out of the regime of the classical continuum mechanics. The introducing of the phason 

field results in a great challenge to the traditional continuum mechanics. This leads to 

two different strain tensors, one is the Cauchy strain tensor 
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another is the phason strain 
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The constitutive equations are  

ij ijkl kl ijkl kl ij klij kl ijkl klC R w H R K w             (13) 

in which 
ij is the stress tensor associated with strain tensor 

ij , ijH the stress tensor 

associated with the strain tensor 
ijw , 

ijklC the phonon elastic constants,
ijklK the 

phason elastic constants, and 
ijklR the phonon-phason coupling elastic constants, 

respectively. 

The equations of motion are as follows [39,40] 
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where 1/ w   , in which w  the dissipation kinematics coefficient of phason field 

of the material defined by Lubensky et al [3]. It is evident that the equation (14) 

represents the wave propagation, while equation (15) represents diffusion. Because 

ij and ijH are coupled, the motion of quasicrystals is in coupled of wave propagation 

and diffusion.  

The above equations are only an outlook of dynamics of liquid crystals and 

quasicrystals, this reveals that the mechanics of either liquid crystals or quasicrystalsis 

quite different from that of conventional fluids as well as elastic solids (or periodic 

crystals), so the solutions of them are quite different from those of classical fluid 

dynamics and elasticity. 

 



 

 

2. Crack and fracture of liquid crystals 

 
The mechanics of liquid crystals are studied by de Gennes et al [4], Oswald et al 

[5] etc, the main attention of theirs was paid to discuss the dislocation and disclination 

problems, but there are some questions of the classical solutions which may be 

paradoxes, this suggests that the mechanics of liquid crystals needs to develop further. 

Brostow et al [5] started to study the crack problems in polymer liquid crystals. 

Because liquid crystals including nematic, smectic and columnar ones, they can be 

classified as monomer liquid crystals (MLCs) irrespectively of the fact whether they 

can or cannot polymerize into polymer liquid crystals (PLCs) [6]. That classification 

is due to Samuski [7] and has been used by a number of authors [8, 9]. The present 

model applies to MLCs and nematic, smectic and columnar phase LCs in particular. 

For studying crack problems of liquid crystals one must develop mechanics of liquid 

crystals, including three-dimensional elasticity, plasticity and dynamics.  

The problem of screw dislocation in smectic liquid crystals A or smectics A for 

simplicity is a longstanding puzzle, de Gennes [4], Kleman [10], Pershan [11] and 

Landau and Lifscitz [12] presented the solution, but which may be of mistake. 

Pleineer [13] pointed out the problem of the solution, but the mistake could not be 

corrected. This problem shows in the theoretical system of mechanics of liquid 

crystals there may be some difficulties, in which the incompatibility between 

governing equations and boundary conditions is one of puzzles. For example, in the 

smectics A, the final governing equation is if only analyzing dislocation  
2
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                       (16) 

which is a partial differential equation of fourth order, which needs two boundary 

conditions to determine solutions, but the authors of Refs [4,10-13] gave only one 

boundary condition, this leads to the incompatibility between governing equation and 

boundary conditions and is the reason of their mistakes. Fan and Li [14] develop the 

elasticity of the smectic liquid crystals, pay attention to create the well-conditional 

boundary value problem of governing equation of mechanics of liquid crystals. So 

that Fan and Li give a correct solution for the dislocation problem as  
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where 
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in equations (15) and (19), '

0B represents the Young’s modulus in direction z of the 

smectics A, the meaning of 1K is one of Frank modulus mentioned above, b the 

magnitude of the Burgers vector of dislocation, 0r  the size of dislocation core, 0R

the size of the body containing the dislocation. The solution (17) modifies the mistake 

of the classical solution of de Gennes-Kleman-Pershan. 



 

 

The well-conditional boundary value problem just can develop the work on crack 

in liquid crystals. As an example, a solution of plastic crack in one of smenctics A is 

found by Fan [15] based on the dislocation pile-up concept, the size of plastic zone 

around crack tip and crack tip opening displacement are determined, shown in Figs. 1 

and 2. 

 
Fig.1 Variation of normalized plastic zone size with normalized applied stress 

 
Fig.2 The variation of normalized crack tip opening displacement versus normalized applied 

stress 

 

Other solutions for plastic crack in smectic A are obtained by Fan [16]. The 

three-dimensional elasticity of smectics B liquid crystals is studied by Fan [17], the 

governing equations are reduced to three generalized harmonic equations, and an 

elliptic disc-shaped crack problem is solved, an approximate analytic solution is 

constructed. Fan and Chen [18] studied the solution of plastic crack of columnar 
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liquid crystals, but the result is more complicated than those of smectic liquid crystals 

A. 

Due to the unusual structure of stress field of liquid crystals leads to some 

difficulties of the crack problem, for example, in the smectics A 
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it is evident that between the stress components the stress singularities will be quite 

different .  

Due to the space limitation, we do not list the other questions and other results on 

mechanics of liquid crystals. 

 

3. Linear theory crack and fracture of quasicrystals 

 
The mechanics of quasicrystals is developed by many scientists, in which the 

elasticity of the material is advanced for example, refer to Lubensky et al [3], Ding et 

al [19], Fan and Mai [20], Fan [21]. The systematical mathematical theory of 

elasticity of quasicrystals is developed by Chinese group [21]. The elasticity, plasticity 

and dynamics of icosahedral quasicrystals, the most important class of the material, 

are well studied in the work. By introducing displacement potential, the plane 

elasticity of icosahedral quaiscrystals is reduced to solve the sextuple harmonic 

equation [21,22,23] 

 
2 2 2 2 2 2 ( , ) 0F x y                           (20) 

From the equation we obtain the solution of a crack in icosahedral Al-Pd-Mn 

quasicrystals by the complex analysis of the Fourier analysis, which is given as 

follows 
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The Fig. 3 shows the energy release rate variation and comparison between solutions 

of quasicrystals and crystals. 

 



 

 

 

Fig.3 Influence of phason and phonon-phason coupling to the energy release rate 

 

in which solution for crystals is also given. One can find that the solutions of 

quasicrystals and crystals are quite different each other (one corresponding to crystals 

is the case / 0R   ). 

Other solutions can be found in Ref [21]. 

 

4. Nonlinear solutions of cracks of quasicrystals 

 
Though there are people try to give some explanations on plastic deformation by 

using dislocation model and so on, the problem is substantively unsolved so far. Due 

to lack of enough experimental data in macroscopy, the constitutive equation of 

plasticity of quasicrystals has not been set up. This leads to difficulty doing stress 

analysis of the material. One can say that the study is in an infant stage. In spite of 

these difficulties, people pay effort to do some work as above pointed out, the 

experiments[24-33] reported in the above references provide some hints, which are 

beneficial for the stress analysis for plasticity and defects of the material. In the 

following some semi-phenomenological and semi-theoretical results are listed, they 

may provide a reference for the researchers in the community.  

 

4.1 Generalized cohesive force model [34,35] 

 

Due to lack of constitutive equation of plasticity of quasicrystals up to now, it 

may be a possible way that we draw the results of classical plasticity, classical 

dislocation theory and classical nonlinear fracture theory to study some relevant 

problems in quasicrystals. A useful model in classical elasto-plastic fracture theory is 

so-called Dugdale-Barenblatt model, the paper [34] extended it to plastic analysis of 

quasicrystals, and named it be generalized Dugdale-Barenblatt model, the classical 

work has been done by [34] and [35]. In terms of the model, we determined the size 



 

 

of plastic zone around the crack tip of anti-plane problem of three-dimensional 

icosahedral quasicrystals 

2

4

2

1
lim2 ( ,0) lim 2 ( ,0) 2 ln sec

2

s
I y y

x l
s

ac p
u x u x

c 

 


    

  
        

   
   (22) 

where 

2 2
2 2

2 1 2 2

1

( )
( )

2

K R
c K K R

K R







   


, 

2

1
4 1 2 1

21

2

K R
c c R c K



 

 
   

 
  (23) 

and      

2

2 1 1 2
1 2

1

(2 )( 3 )

2( 2 )

R K K K K R
c

K R

 



  



 

The curve drawn from（22）refer to Fig.4，which shows the effect of phason 

and phonon-phason coupling is significant. 

 

Fig. 4 Crack tip opening displacement versus applied stress for icosahedral quasicrystal [21] 

 

4.2 Generalized continuum dislocations model [36] 

 

We developed the continuous dislocation model [36], the results are identical to 

those given in Subsection 4.1. 

 

4.3 Model based on generalized Eshelby energy-momentum tensor [37] 

 

The generalized Dugdale-Barenblatt model and generalized continuum dislocation 

model, are quite different physically and mathematically, yield amazingly the 

complete identical solutions, we realized that there exist some inherent connection 

between the two models. Paper [37] gave a probe for the question. They proposed the 

generalized energy-momentum tensor of quasicrystals 
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and generalized integral of path independency  

E Gd Γ Γ                           (25) 

and found that they are the uniformly theoretical base of generalized 

Dugdale-Barenblatt model and generalized continuum dislocations model.The idea 

comes from the classical work of Eshelby [38] for crystals. 

 

5. Dynamic solutions of cracks of quasicrystals 
 

In the dynamic regime, the essential differences between phonons and phasons 

just can be profoundly revealed. However the problem presents fundamental difficulty 

because the mechanism of phason dynamics is not so clear so far. 

Rocal and Lorman[39]and Fan et al [40]，suggested the dynamic equation set for 

quasicrystals (14) and (15).This is the simplest dynamic equation set of quasicrystals, 

which coupled deformation geometry equations and stress-strain relations and lead 

to.the final governing equations of elasto-dynamics (or call elasto-/hydro-dynamics)  
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Note that 1 2,c c and 3c  represent speeds of elastic waves, while 1 2,d d and 3d

are not wave speeds, which are diffusive coefficients of phasons. 

The numerical analysis is given for the specimen shown in Fig.5 made of 

icosahedral quasicrystal. After finite difference treatment on equation set (26) and 

corresponding boundary and initial conditions, the dynamic stress intensity factor for 

initiation of crack growth is obtained and shown in Fig.6.In the computation this is a 



 

 

simplest equation set of hydrodynamics of quasicrystals, which is simplified from the 

equations of Lubensky et al [3]. 

 

           Figure 5 Sample containing a dynamic crack of two-dimensional quasicrystals 

 

After finite difference treatment on equation set (26) and corresponding boundary 

and initial conditions, the dynamic stress intensity factor for initiation of crack growth 

is obtained and shown in Fig.6. In the computation 

 

Figure 6 The dynamic stress intensity factor of rectangular specimen with a central crack of 

icosahedral Al-Pd-Mn quasicrystal under impact loading (for stationary crack) 

 

the material is icosahedral Al-Pd-Mn quasicrystal with material constants： 
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/ 0.01R   for quasicrystal, and / 0R    for crystal. It is evident that the results 

between quasicrystal and crystal are quite large. 

The dynamic stress intensity factor for fast crack propagation of the central 

specimen is illustrated in Fig.7, which comes from monograph [21]. 

 

Figure 7 Dynamic stress intensity factor versus time of fast propagating crack in 

rectangular specimen with a central crack of icosahedral Al-Pd- Mn quasicrystal 

 

The oscillation of the curve comes from the interference and reflection of waves, 

in which there are reasons come from numerical computation, it is needed doing 

further study.  

 

6. Discussion and conclusion 

 
The study of crack and fracture problems in liquid crystals is just begun, so it is 

in infant stage. The difficulty comes from some basic problems in the mechanics of 

liquid crystals, this also provides opportunity to gain the achievements in the field. 

The linear elastic fracture theory of quasicrystals has been developed, the study 

of nonlinear and dynamic fracture theories of quasicrystals is also carried out, but 

faces some fundamental difficulties. 

Because of many unsolved critical issues, the study is a fascinating research area 

of the materials science.  
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