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Abstract: This paper aims at finding the sources of crack development in modern structures at an 
elevated temperature and under severe vibrations due to excessive load magnitudes and also of ceismic 
vibrations. In the present paper attempts have been made for solving the problems relating to large 
amplitude vibrations of uniform elasto plastic plates and shells under both static and dynamic loads 
using the method of constant deflection contour lines[8-15]. Also, the effect of crack development and 
its propagation through the structures have been studied rigorously. The works in this field by numerous 
researchers are discussed shortly in the introduction and considering all the assumptions made by them 
after proper correction compatible with the boundary conditions, the present author tries to develop the 
equations with consideration of  multi aspect crack generating factors and their impact on the time 
periods of nonlinear vibration of the structures and the results obtained for a crack structure are 
presented along with that of the  non cracked structure. 

I N T R O D U C T I O N 
                                                                                      

Modern structures are often subjected to severe vibrations and high temperatures.  Sometimes the 
magnitudes of the applied forces or loads become very large, exceeding the elastic limit and brittle 
strength of the material used. Ceismic vibrations during earth quake, crashes and blasting of bombs etc. 
sometimes initiate the growth of fractures within the structures  Also, if there exist any source of fracture 
like crystal defects, brittle disorder, imperfections etc within the structures (may or may not be visible 
from outsides), fracture will be developed and during the  load variations in static cases or during 
vibrations in all dynamic cases and also during temperature elevation , the fractures have got dynamic 
character; i.e., crack begins to propagate through the structures causing  a notable variation of the 
magnitude of the flexural rigidity of the material. Gradually, the crack developed within the structures 
causes a damage of the system due it its growth and dynamic nature. Griffith [1], Irwin[2], E. Erdogan 
[3], Orowan [4], G.I. Barenblatt [5], D.S, Dugdale [6], J. R. Wills [7] had made extensive researches on 
fracture mechanics. Some had attempted to explain the fracture character in structures assuming some 
sort of flaws within it. But all the works are based on some highly simplified hypothesis. To verify the 
flaw hypothesis, Griffith introduced an artificial flaw in his experimental specimens. The artificial flaw 
was in the form of a surface crack which was much larger than other flaws in a specimen. Irwin 
strategically partitioned the energy in two parts; the stored elastic strain energy which is released as a 
crack grows. This is the thermodynamic driving force for fracture and the dissipated energy which 
includes plastic dissipation and the surface energy also any other dissipative forces that may be at work. 



  

The dissipated energy provides the thermodynamic resistance to fracture. The Stress Intensity Factor is 

given by the following equations.                          

where E is the Young's modulus, ν is Poisson's ratio, and KI is the stress intensity factor in mode I. Irwin 
also showed that the strain energy release rate of a planar crack in a linear elastic body can be expressed 
in terms of the mode I, mode II (sliding mode), and mode III (tearing mode) stress intensity factors for 
the most general loading conditions. Irwin adopted the additional assumption that the size and shape of 
the energy dissipation zone remains approximately constant during brittle fracture. This assumption 
suggests that the energy needed to create a unit fracture surface is a constant that depends only on the 
material. This new material property was given the name fracture toughness and designated GIc. Today, 
it is the critical stress intensity factor KIc, found in the plain strain condition, which is accepted as the 
defining property in linear elastic fracture mechanics. 

By applying the theory of fracture mechanics one can study the propagation of cracks in materials. 
Fracture Mechanics uses methods of analytical solid mechanics to calculate the driving force on a crack 
and those of experimental solid mechanics to characterize the material's resistance to fracture. It applies 
the Physics of Stress and Strain, in particular the theories of elasticity and Plasticity, to the microscopic 
Crystallographic defects found in real materials in order to predict the macroscopic mechanical failure of 
bodies.A comparative study of the static and dynamic characteristics of the structure will provide a 
notice for of such a failure before hand . The prediction of crack growth is at the heart of the damage 
tolerance discipline. Still, by studying the static and dynamic characteristics of the structures and 
comparing the results with the standard results of the same structures without any crack, an estimation of 
the safety factor may be obtained with ease.  

Derivation Of The Governing Differential Equations for A Non Cracked Structure 
 
A shallow shell of uniform thickness  `h ` is considered. Let the equation of the middle surface of the 
shell, referred to an orthogonal coordinate system (x,y,z), be given by  
         
                          Z  =  (  x 2 /  2 R x   )     +    (  xy  / R xy   )     +   ( y 2/ 2 R y)                              (1)                         
                                       
For  a shallow shell   r  = √ ( x 2  +  y 2 )   considered small in comparison to the  least of the radii of 
curvature, R x  ,  R  xy and  R  y which are taken to constants.When the shell experiences axisymmetric 
free vibration the  intersections of the deflected surface and the parallels  z  =  constant yield contour 
lines of constant deflection. Application of D` Alembert`s principle to an element of the shell bounded 
by such a contour at any time τ and subsequent summation of the forces in the direction normal to the 
surface yields the following dynamical equations [1] : 
 ∫V n   ds +  ∫ ∫[ρ h  ( ∂ 2 w ) / ∂ τ 2   +  ( N x ) / R x   +( N y ) / R y  + 2  ( Nxy )/R xy  ] dx dy  =  0      (2)           
 where the transverse reaction forces  Vn = Qn  - ∂/∂s( Mnt ) in absence of fractures,                     (2,a)                         
Vn = Qn  - ∂/∂s( Mnt ) – f(a, G, K), the last term is due to fractures,                                                (2,b)                         



  

represents the effect of the  shearing force  Qn and the edge-rate of change of twisting moment  Mnt 
along the contour  Cu . According to Ilyushin`s  theory of the elastic plastic deformation (1948), the 
bending moments Mx,My,Mxy and their shear forces Qx, Qy are given by the following relations:                                
                         
                          
                          Mx  =  - D ( 1 – ν ) { (∂2w/∂x2)  + ν (∂2w/∂y2)}                                                     (3) 

  My  =  - D ( 1 – ν ) { (∂2w/∂y2)  + ν (∂2w/∂ x2)}                                                               
Mxy  =    D ( 1 – ν ) ( 1 – Ω ) (∂2w / ∂x∂y )                                                                                                
Qx    =   (∂/∂x)  { M y} –  (∂/∂y)  {Mxy}  

                        Qy    =   (∂/∂y)  { M x} –  (∂/∂x)  {  M xy)  }   
                       Qn   = Qx  Cosα   +  Qy  Sinα 
 

Mnt  =   Mxy ( Cos2 α  - Sin2 α )  +  (Mx - My) Sin α Cosα                                        (4)                            
                  
Where,  Cosα  =  (dy / ds )  and   Sinα = - ( dx / ds ) . 
 
Here, ρ, h and w are, respectivly, the mass density, the shell thickness and the deflection. Using the well 
known expressions for the moments and shearing forces and assuming that the membrane forces N x,, N 
y  and Nxy are given by                                  
                      
 N x  =  (∂ 2 Φ  / ∂  y2 ),   N y    =(  ∂ 2 Φ  / ∂  x 2 ),  N xy= - ( ∂ 2 Φ  / ∂ x ∂ y)                                     (5)                          
Equation  (2)  finally reduces to: 
 
(∂ 3w/∂ u 3) ∫( 1 - Ω ) Rds  + (∂ 2w/∂ u 2)  ∫( 1 - Ω ) F ds  +  (∂w/∂ u)  ∫( 1 - Ω  G ds                                                       
+ (∂ 2w/∂ u 2)  ∫ D [(∂ Ω /∂ x ) (∂ u /∂ x )  + (∂ Ω /∂ y ) (∂ u /∂ y )  ]  √ t ds  +  (∂w/∂ u)  ∫  (D / √ t ) [K(∂ 
Ω /∂ x )  + L (∂ Ω /∂ y )]  ds  + ∫∫ [ρ h   (∂ 2w/∂ τ 2  ( 1/ R x )( ∂ 2 Φ  / ∂  y2 )   + ( 1 / R y ) (  ∂ 2 Φ  / ∂  x 2 )                     
-  2 / ( R xy ∂ 2 Φ  / ∂ x ∂ y ]  dx dy  =  0                                                                                              (6)                          
Where R,F,G are given in Ref.13,    D =  ( E h 3 / 12 (1 – ν2 )  ,is the flexural rigidity. 
Here, Ω = 0 when  e  ≤ 1, the region is elastic ; when  e > 1 the  region is 
plastic.  Also,      Ω  =  λ [ 1 – ( 3 / 2e )  + ( 1 /2e3  )                                                                                         

and  e2 = (h2/3es 2) [(∂2w/∂x2)+(∂2w/∂y2 )+(∂2w/∂x∂y)+(∂2w/∂x2) (∂2w/∂y2)                                           

           =  (h2/3es 2) [ M  (∂w/∂u)2+  N(∂w/∂u) (∂ 2w/∂u2) (∂w/∂u) + t 2 (∂ 2w/∂u2)                       (7)                           
in  which  es  is the yield strain,  ν   is  the poisson`s ratio,  D is the flexural rigidity of the plate material, 
λ is a material   constant .  
 Here ,   M  =[ u , xx 2  + u, yy 2 + u,xx u, yy + u,xy 2 ] 
             N   = [ 2 u,x 

2 u,xx + 2 u,y 2 u,yy + u,xx u, y 2  +u,x u,yy + 2 u,x u,y u,xy ]                                                                  
t 2   = ( u,x 2 + u,y 

2 )   
Considering only the transverse vibration, we assume that          
                                                                      w  =  W( x,y ) f (t)                                                           (8) 
                                                                      Φ  =  Φ ( x,y ) f(t)                                                           (9) 
Equation (6) will now reduce to 
    [(∂ 3W/∂ u 3) ∫  ( 1 - Ω ) Rds  + (∂ 2W/∂ u 2)  ∫( 1 - Ω )  F ds  +  (∂W/∂ u)  ∫( 1 - Ω )   G ds                                         
+ (∂ 2W/∂ u 2)  ∫ D [(∂ Ω /∂ x ) (∂ u /∂ x ) + (∂ Ω /∂ y ) (∂ u /∂ y )  ]  √ t ds  +  (∂W/∂ u)  ∫  (D / √ t ) [K(∂ 



  

Ω /∂ x )  + L (∂ Ω /∂ y ) ] ds ] f(t) + ∫∫[ρ h W f``` (t) +{ ( 1/ R x )( ∂ 2 Φ  / ∂  y2 )   + ( 1 / R y ) (  ∂ 2 Φ  / ∂  x 
2 )  - 2 / ( R xy ∂ 2 Φ  / ∂ x ∂ y } f(t)] dx dy  = 0                                                                                     (10)                      
Consequently, the condition for continuity of deformation reduces to 
     4  Φ  =  { 12D (1 – ν 2 ) } / h 2  ( 1 - Ω ) [( 1/ R x )( ∂ 2 Φ  / ∂  y2 )   + ( 1 / R y ) (  ∂ 2 Φ  / ∂  x 2 )  
 -  2 / ( R xy   )                                                                                                                                       (11)                       
 
This equation must hold over all points in the interior of the shell. After integration over the area and 
application of Greens theorem one obtains : 

(d3Φ/du3     )∫  Rds +( d2 Φ/du2     )∫  Fds +( dΦ/du  ) ∫  Gds * 12D2 ( 1 – v2 ) / h2 ( 1 - Ω )( dW/du )  
∫ Kx ( ∂ u / ∂y )2  +  Ky  ( ∂ u / ∂x )2 / t½ ds  =  0                                                                                   (12)                    
 
where  Kx  and K y denote curvatures at a point and K xy has been assumed to be zero in accordance 
with the shallowshell theory. Equations ( 11) and (13) are now the two basic equations for large 
amplitude vibration of shallow shell.    
 
  
                                                                                    
 

  
  
 
                         Internally Cracked shallow domes and  isodeflection contour lines                                                       
 
                                                              Figure-I 
                                                          

ILLUSTRATION: 
                                                                      
Let us now consider a clamped dome of non-zero curvature upon an elliptic base. For the first  

approximation  under symmetry consideration we may write 

                                                                           u  =  1  - x 2 / a 2  - y 2 / b 2                                          (13) 
 
Performing the contour integrations taken around the closed contour            
                                                                           u  =  1  - x 2 / a 2  - y 2 / b 2 

 



  

And the double integration extending over the ellipse                         
                                                                            x 2 / a 2  + y 2 / b 2  =  1 – u                                      (14)                       
Equation (11) in non dimensional form becomes 
 
( 1  - Ω ) ( 1 – u ) (d 3W/d u 3 )  - 2  ( 1  - Ω ) (d 2W/d u 2 )   - ( d Ω / d u ) [ ( 1  -  u ) (d 2W/d u 2 )  - 
2 P {  ( 1/ a 4 )  +  ( 1  / b 4 )  + 2 ν / a 2 b 2 ) ( d W / du )  ] +(ρ h 2 ω 2 P) / (2  D e s a 2) - {( E h γ)/D } 
(d Φ/ du )  =  0                                                                                                                              (15) 
                                                                                                                                                                   
where   P   =   ( a 4 b 4 ) / (3 a 4  +2 a 2 b 2 +  3 b 4 ), while equation ( 12) in non dimensional form 
will reduce to 
 ( 1 – u)  ( d 3 Φ / du 3 )  - 2(d 2 Φ/ d 2 u )  + ( 1 - Ω ) γ ( d W / d u )  =  0                                      (16)                           
with γ = p ( kx / b2 + ky / a2 ) ;  W = wh/  es a2 ; Φ =  φ/Ee s a 2                                                      (17)                           
(18)                                                                                           

METHOD OF SOLUTION 
 
On substitution of the value of Ω into equations  ( 16 )    &   ( 17 ), one obtains 
[( 1 – u ) (d 3W/d u 3)  -  2(d 2W/d u 2 )]  Q 1 f(t) -   [ 2M (d 2W/d u 2 ) ( d W / du ) + N(d 2W/d u 2 ) 2      

N (d 3W/d u 3)  ( d W / du )  +  2 t 2 (d 3W/d u 3)  ( d W / du )  ]   [( 1 – u )(d 2W/d u 2)  - 2 P 1( d 
W/du)Q 2 f3 ( t)   - (Eh γ/D) f(t) ( d  Φ / d + (ρ h   / (2  D e s a 2)   f`` (t)  = 0                                (18)                            
 
and    ( 1 – u )  ( d 3 Φ / du 3 )    - 2(d 2 Φ/ d 2 u )   +      Q 1 γ( d W / d u )    = 0                         (19)                              
 
Where ,  Q 1 =  [  2 e 3 (  1 – λ )  + λ ( 3 e 2 – 1 )] /2 e 3     ;             Q 2  =  (λ/4 e5)( e 2 – 1)             

                                                                                                                 
 P 1  = P ( 1/ a 4 + 1/ b 4 + 2   ν/ a 2 b 2 ) 
 
Also, e 2  is given by 
  e 2 =  ⅓[ M ( d W / du )  2  + N  ( d W / du ) ( d 2W/d u 2 ) +  t 2 (d 2W/d u) 2]                         (20)                             
                              
Suppose the shell is completely clamped along the boundary. 
 
The boundary conditions are given by 
                                                               W    =  0  =   (dW/du)   
                                                                    u=0                          u=0 
                                                               Φ|   = 0  = (d Φ/du)  |  
                                                                   u=0                             u=0  
 
To find an approximate solution, we assume  the following trial solutions: 
                                                           W =  Σ a j u j  ;    Φ  = Σ  b j u j                                            (21)                            
 
On substitution of these trial solutions in equations (16) & (18), we get  the residuals R 1 
& R 2 which, after the application of Galerkin`s  procedure, yield the following results.    

                                                                                                                                                        
(ρ h2  P) / (6  D e s a 2) f``(t)  =  [(4/3) Q 1 a 2   +(Eh γ/2D)  b 2] f(t)   
+[ (4/5) M  +(2/3) N – (32/5) M P 1 – 4 N P 1 ] Q 2 a 23 f  3(t)                             (22)                        

                                     and      b 2  =  (3/8) Q1  γ a 2                                                                                   (23)                                           



  

                           
while the average value of  `e` happens to be 
                           e  = a 2  √ [(1/a 4) +(1/b 4 ) +( 2/a 2 b 2) ] ( 40/9)                                      (24) 
 
  From equations (22) & (23), one obtains the following time differential equations in f(t): 
 
                                                   f``(t)  +μ f(t) + ζ f 3 (t)  = 0                                                   (25)  
  where,     μ  = -( 6 D e s a 2 / ρ h 2 P ) [ (4/5) M + (2/3) N – (32/5) M P 1 – 4 N P 1 ] Q 2 a 23   

 

Since the series is rapidly converging hence considering the first few terms one may obtain the  

approximate   value of the central deflection   w* as    

                                                         w *   = Σ  a j     
                                                                           j                                                                                                       
The solution of equation  (25) is given by  
 
                                        f(t)  =  a 0 Sin [ μt { 1 +  (3/8) a 0 2( ζ/μ)   }  + θ 0  ]                               (26) 
 
The time periods of the  non-linear and linear oscillations are     
                                                              
 T*  =2π/ [ μ { 1 + (3/8) a 0 2( ζ/μ)   }]    and  T =  2π/ μ. 
 
Thus     [T /T* ]   = 1/ { 1 + (3/8) a 0 2( ζ/μ)                                                                               (27)  
 
 
 
                                                                        
                                                      N U M E R I C A L   R E S U L T S 
 
 
Numerical results are computed both for circular and elliptic plates & shallow domes upon 
the circular & elliptic bases in the elastic and elastic plastic regions and these are 
presented in tables ( 1 – 4 ). The computations are made with different values of the 
shallowness parameter ( 2 γ / h ) and material constant ν = 0.3. Dynamic responses of the 
elasto-plastic shells for moderately large amplitude are obtained from the same differential 
equations.  Moreover, effect of crack /  fractures are computed with the same equation 
only changing the term for Vn in equation (2,b) and making  subsequent changes in other 
equations and the results are presented in the tables  from (1-4, red coloured) .This is no 
doubt advantageous as such both static and dynamic behaviors are obtained 
simultaneously with least effort.                                                            
                                                
 
 
 
 



  

                                                                       
                                                                  T A B L E   - 1       
 
Free vibrations of clamped plastic shallow shell with circular planform. First row results for 
without crack while the second row results[Red coloured] are with crack. 
e >1  ,   a = b, ν = 0.3  ,λ =1 
                                                                                            T*/T→ 
                           

W*a0→ 0 0.5 1.0 1.5 2.0 
   
2γ/=0  
 

1.0000 , 
1.0276        
                                    

1.0256 
1.0453 
 

1.1111
1.0689 
 

1.2903
1.3561 
 

1.6666
1.7860 
 

2γ/h=1 1.0000 
1.0045 

1.0184 
1.0235 

1.0778 
1.0976 

1.1940 
1.2357 

1.4063 
1.5872 

2γ/h=2 1.0000 
1.0011 

1.0099 
1.0212 

1.0411 
1.1676 

1.0975 
1.2879 

1.1874 
1.3654 

2γ/h=3 1.0000 
1.0078 

1.0056 
1.0487 

1.0230 
1.1432 

1.0532 
1.1769 

1.0985 
1.1980 

2γ/h=4 1.0000 
1.0061 

1.0037 
1.0764 

1.0149 
1.1267 

1.0345 
1.1478 

1.0621 
1.1645 

2γ/h=5 1.0000 
1.0032 

1.0024 
1.0989 

1.0095 
1.1087 

1.1215 
1.1112 

1.0390 
1.1313 

                                                                         
                                                                                 T A B L E   -2   
 
                                                                                 
Free vibrations of clamped plastic shallow shell with elliptic planform . e >1  ,   a =2 b, ν = 
0.3  ,λ = 1. First row results for without crack while the second row results[Red coloured] are 
with crack.                                                                                                                                                                         
                                                                                                                        T*/T→ 
 

W*a0→ 0 0.5 1.0 1.5 2.0 
2γ/h=0  
 

1.0000 
1.0087 
 
 

1.0866 
1.1432 
 

1.4682 
1.8760 

2.5398 
2.7890 

4.6241 
5.0023 

2γ/h=1 1.0000 
1.1123 

1.0611 
1.1564 

1.2995 
1.8709 

2.0768 
2.9556 

2.2857 
3.0986 

2γ/h=2 1.0000 
1.2345 

1.0325 
1.4532 

1.1439 
1.6750 

1.3947 
1.9870 

2.6125 
3.1012 
 
 

2γ/h=3 1.0000 
1.5680 

1.0182 
1.7690 

1.0771 
1.9080 

1.1919 
2.3240 

1.4009 
3.4532 

2γ/h=4 1.0000 
1.6730 

1.0133 
1.8750 

1.0468 
2.0021 

1.1117 
2.0234 

1.2176 
3.6700 

2γ/h=5 1.0000 
1.8870 

1.0075 
2.0222 

1.0310 
2.3421 

1.0726 
2.4562 

1.1367 
3. 7800 

                                                                                 
 
 



  

                                                                          T A B L E  - 3 
 
Free vibrations of clamped elastic shallow shell with circular planform . e >1  ,   a = b, ν = 
0.3  ,λ = 1. First row results for without crack while the second row results[Red coloured] are 
with crack.                                                                      T*/T→ 
 

W*a0→ 0 0.5 1.0 1.5 2.0 
2γ/=0  1.0000 

1.0500 
1.9582 
2.1865 
 

0.8513 
2.5087 
 

0.7179 
3.1254 
 

0.5887 
3.2754 
 

2γ/h=1 1.0000 
1.0836 

1.9695 
2.3905 

0.8880 
2.6540 

0.7789 
3.2300 

0.6646 
3.4322 

2γ/h=2 1.0000 
1.1021 

1.9831 
2.5214 

0.9355 
2.8800 

0.8657 
3.3500 

0.7840 
3.4804 

2γ/h=3 1.0000 
1.1208 

1.9903 
2.7806 

0.9623 
2.9231 

0.9189 
3.5602 

0.8645 
3.7120 

2γ/h=4 1.0000 
1.1457 

1.9936 
2.9807 

0.9751 
3.0061 

0.9457 
3.6615 

0.9074 
3.8654 

2γ/h=5 1.0000 
1.1674 

1.9960 
3.0085 

0.9838 
3.0120 

0.9645 
3.7211 

0.9385 
3.9800 

                      
             
                                                                                                             

T A B L E - 4 
                                                                                                                                                                                      
Free vibrations of clamped elastic shallow shell with elliptic planform . e >1  ,   a = 2b, ν = 
0.3  ,λ = 1   . First row results for without crack while the second row results[Red coloured] are 
with crack.                                                                                                                                                                        
T*/T→ 

W*a0→ 0 0.5 1.0 1.5 2.0 
2γ/=0  1.0000 

1.0764 
0.8778 
2.3421 

0.6423 
2.3675 

0.4436 
3.1586 

0.3098 
3.4210 

2γ/h=1 1.0000 
1.0887 

0.9085 
2.4531 

0.7130 
2.4722 

0.5247 
3.4326 

0.3883 
3.4789 

2γ/h=2 1.0000 
1.0912 

0.9479 
2.6487 

0.8200 
2.7120 

0.6692 
3.6870 

0.5323 
3.7123 

2γ/h=3 1.0000 
1.1105 

0.9697 
2.7896 

0.8888 
2.8760 

0.7805 
3.8902 

0.6667 
3.9431 

2γ/h=4 1.0000 
1.1236 

0.9808 
2.9807 

0.9276 
3.0023 

0.8507 
3.9034 

0.7622 
3.9890 

2γ/h=5 1.0000 
1.1432 

0.9865 
3.0231 

0.9480 
3.0765 

0.8902 
3.9986 

0.8203 
4.0064 

                      
                                                                        
                    
 
 
 
 
 
 



  

O B S E R V A T I O N S  A N D   C O N C L U S I O N S 
 
It is observed that the results obtained for elastic shallow shells  are in excellent agreement 
with those obtained in [ 4, 5].Also, the results for plastic shells  based on circular and elliptic 
domes are in good agreement with those obtained in [ 4 ].  It is found in both the cases that the 
ratio of nonlinear to linear time periods become larger in case of plastic shell in comparison to 
those obtained in case of  elastic shells and which is expected. This actually supports the 
application of the isodeflection contour lines method to analyse such problems. Inspite of that 
the method has some limitations. It heavily relies on the accuraqcy of the choice of the iso-
deflection contour function u(x,y). The main advantage of the method lies in the fact that once 
the  form of the function u (x,y) is chosen suitably the remaining task can be tackled with ease 
and accuracy. Numerical results [red coloured] obtained for the plates and shells in presence of 
fractures reveal the fact that  due to reduction of the values of elastic constants reaction falls 
and some irregularities are observed when the cracks propagating through the specimen 
increasing their dimensions which is expected. 
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