
 

Nonlinear fracture mechanics metal foams 
 

Tian You Fan1,*, Hai Yun Hu1, Ling Yun Xie1,  
Lin Feng Sun1, Rui Ping Guo2 

 
1 School of Physics, Beijing Institute of Technology, Beijing, 100081, China 

2The Academy of Equipment Command and Technology, Beijing, 101416, China 
 

* Corresponding author: tyfan2006@yahoo.com.cn 
 

Abstract  Nonlinear fracture mechanics of metal foams is discussed. The equivalent 
continuum constitutive model is introduced first. Then we studied analytic solutions on plastic 
analysis based on generalized cohesive force model, approximate analytic solution of 
elasto-plastic analysis for central crack, single edge crack specimens in tension and bending, 
respectively. The finite element analysis is also conducted. In addition, the crack slowly 
growth and fast propagation are studied as well.Atthe end we proposed a fracture criterion on 
metal foam. 
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1. Introduction 
 

Cellular/foam material, which is one of advanced materials, has become an 
important engineering material to date due to its lower density and higher specific 
strength and other excellent mechanical, thermal and acoustical behaviour. For 
engineering usage, the structural integrity requires materials to have sufficient 
strength and toughness. Hence the study of crack problems in the material is 
significant. It is well-known that the basis of deformation and fracture investigation is 
constitutive law for any engineering materials. Triantafilou and Gibson [1], Gibson et 
al [2], Deshpande and Fleck [3], Miller [4] and others carried on considerable studies 
in this respect. Based on the equivalent continuum model they put forward some new 
macroscopic parameters out of the conventional materials to describe the influence of 
the substructure, which is called cells. The existence of cells leads to unusual 
plasticity of metal foams, that is the plasticity dependent from volume 
deformation.Thus the effect of hydrostatic pressure or the average stress should be 
considered, and these quantities should be contained into the new constitutive 
equations in the so-called equivalent continuum model. With these constitutive 
equations, the elasto-plastic analysis for cellular/foam material can be done. The 
nonlinearity of the governing equations of the material makes it difficult to construct 
analytic solutions of boundary value problems. Fan and co-workers [5,6] paid 
attention to developing a generalized cohesive force model and making the problem 
being linearized for static crack and moving crack problems, and they developed an 
asymptotic analysis method by using singular perturbation procedure for slowly 
steady crack growth problem. Within the linearization regime, the complex analysis 
presents its particular role and in this paper we report one of the works. The 
application of conformal mapping helps us to construct some solutions of finite size 
crack specimens, and it may be useful to experimental investigation and engineering 



 

application. 

2. Overview in brief of equivalent continuum constitutive laws  

 
The artificial cellular materials include metal, polymer and ceramic foams 

respectively. The first two foams display plasticity of dependent of volume 
deformation, so that the hydrostatic pressure p  or the average stress m  must be 

taken into account in the constitutive law of the material. The yield/loading surface 
can be expressed by 

ˆ 0Φ Y                                   (1) 
where̂  represents the generalized effective stress which will be discussed in the 
following, and if 

Y constY                                   (2) 

in which Y  denotes the uniaxial tensile yield limit of the material, then equation (1) 

stands for an initial surface. Alternatively if   

( )Y Y h                                      (3) 

where h  is a parameter describing plastic deformation history, then equation (1) 
represents the evolution equation of yield/loading surface. 

Triantafilou and Gibson [1] (“TG” to “abbreviated as the TG model” in the 
following) suggested that 
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where *  denotes the density of foam, and s  the density of cell wall of the foam, 

and  
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is the von Mises effective stress, and  
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the deviate stress tensor, in which ij  represents stress tensor, and 

11 22 33kk      m3 3 ,p   ij  the unit tensor. Substituting equation (4) into 

equation (1) obtains the TG yield/loading surface of foams. 
Gibson, Ashby, Zhang and Triantafilou[2] (“GAZT” to “abbreviated as the GAZT 

model” in the following) put forward  
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Substituting equation (7) into equation (1) leads to the GAZT yield/loading surface of 
cellular materials. 

After the work of TG and GAZT the constitutive models of foams were studied 
by many other groups. Distinguished from the above models, researchers take other 
parameters, according to experiments, to describe the effect of cells rather than the 



 

relative density *
s/  . 

Deshpande and Fleck [3] (“DF” to “abbreviated as the DF model” in the 
following) define a plastic Poisson’s ratio as  
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where p
11  and p

22  are plastic strain rates. In terms of equation (8) DF derived a 

parameter  to describe plasticity of dependent volume deformation 
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where the value of   is in range 1 2  . Further they suggested the generalized 
effective stress as follows 
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It is evident that if p 1/ 2v  , then 0  , this corresponds to the plasticity of 
independent volume deformation, i.e., the classical plasticity. 

The substitution of equation (10) into equation (1) yields the DF yield/loading 
surface. 

There are other models of constitutive law for metal foams and polymer foams, 
but we do not list again. 

By considering isotropic hardening, based on flow rule and the above 
yield/loading surfaces, one can obtain the corresponding constitutive equations, which 
can be expressed uniformly as follows 
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where ij  represents strain rate tensor, e
ij  the elastic strain rate one, p

ij  the plastic 

strain rate one, ij  the stress rate one, E  and v  the Young’s modulus and 

Poisson’s ratio, and ˆ( )H   the hardening modulus, which can be approximately 

calibrated through a simple stress-strain relation, e.g. pˆ( ) d / dH    represents the 
hardening modulus at the stress amplitude value as ̂ , respectively. From equations 
(1) and (4), (7), (10) and (11), we have  
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The form of rate ̂  can be easily found from the previous definitions of generalized 

effective stresses. 



 

Coupling the constitutive equation (11) and the deformation geometry 
equationsand equilibrium equationsand appropriate boundary conditions, the 
elasto-plastic analysis for the foam materials can be carried out.  

 

3. Generalized cohesive force model and solution 

 
Due to the nonlinearity of equations we can find that the elasto-plastic analysis of 

crack problems of metal foams is very difficult, the exact analytical solution is almost 
not available. But the application of some simple physical models can simplify the 
solving dramatically. It is well-known that the Dugdale model [7], or the 
Dugdale-Barenblatt model [7, 8], or the cohesive force model is very effective in the 
study of plastic fracture of conventional structural materials. A similar work is the 
so-called BCS model [9, 10]. We extend the Dugdale model for conventional 
structural materials into the foam materials, the statement is as follows. 

 
3.1 Generalized cohesive force model for cellular/foam materials --plane strain 
state 
 

Assume that an infinite plane of foam material with a Griffith crack subjected a 
uniform tension ( )  at infinity, refer to Fig.1, in which the pulling stress ( )p   , 
and the plastic zone around crack tip is with a narrow band type, whose length is 
denoted by d , but its value is unknown at moment to be determined. 

 

Fig. 1 The generalized cohesive force model for infinite specimen 

 

According to the yield criteria of TG, GAZT, DF models respectively, the 
corresponding Dugdale plastic zone near the crack tip leads to  

Y0,  :  ,  0yy xyy a x a d          (13) 

Based on the constitutive laws of listed by (11) with (4), (7), (10) respectively, 
where Y represents the uniaxial tensile yield limit of foam materials, and the 



 

parameter  describing cellular/foam materials behaviour and stress state, for plane 
stress case: 
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Though there is a new unknown quantity d , the nonlinear problems is linearized, 
so the equations are reduced to biharmonic equation: 
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where 2 2 2 2 2/ ,  / ,  /yy xx xyU x U y U x y             .The complex representations 

ofU is the stress potential function, iu the displacement vector and ij is similar to that 

given in conventional structural materials.  
The corresponding boundary conditions are  

2 2 ( )

Y

:  ,  0;

0,  :  0,  0;

0,  :  ,  0

yy xx xy

yy xy

yy xy

x y

y x a

y a x a d

   

 

  

     
    
                         

(16) 

The linearization problem of cellular/foam materials is concluded to solve the 
boundary value problem. 

Similar to the classical plastic fracture theory, the solutions are 
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and 
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in which equation (17) determines the plastic zone size, and equation (18) gives the 
crack tip opening displacement (these two equations were first given by Fan et [5]), 
respectively. The both formulas contain the parameter  describing behaviour of foam 
materials. The variations of the crack tip opening displacement versus applied stress 
for different values of the new material constant for DF model are shown in Figs. 2  
in which the foam material constants 0.271GPa,  0.811MPaYE   .  

 



 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

()/Y

 t
/a

 

 

=0   (=1)

=1   (=0.87)

=2   (=0.72)

 

Fig. 2 Variation of values of t  versus applied stress for infinite specimen 

 
3.2 Generalized cohesive force model for cellular/foam materials --plane strain 
state 
 

The discussion is similar to Subsection 3.1, the only differences lie in that the 
boundary conditions (16) are replaced and the parameter   (given by (14) ) is 

replaced by ' (given by the following (20)) 
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The solutions are similar to those in Subsection 3.1, the only difference is that the 

parameter   should be replaced by '  
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4. The development of the generalized cohesive force model  

 
In the applications, the finite size specimens are particular important, which are 

discussed as following. 
 

4.1 Central crack specimen of finite width  
 
4.1.1 Plane stress state 
 

The approximate analytic solution is obtained as follows 
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4.1.2 Plane strain state 
 

The solution is 
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4.2 Single edge crack specimen with finite width  

 
Another significant specimen is single edge crack specimen, shown as below: 
 

 
Fig. 3 Single edge crack specimen under tension 

 

4.2.1 Plane stress state 
 

The approximate analytic solution is obtained as follows 
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In the derivation the conformal mapping 
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is used to transform region of the specimen at the physical plane (i.e., the z  plane) 
onto the upper half-plane at the mapping plane (i.e., the   plane ). 
 

4.2.2 Plane strain state 
 

The solution for plane strain is 
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The numerical results are shown in Fig.4. 

 

Fig.4Variation of values of t  versus applied stressfor finite specimen with a/W =0.3 

 
4.3. Pure bending specimen of central crack  

 
The pure bending specimen is significant in applications. 
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4.3.1 Plane stress state 
 

The solution is  
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in which M  is bending moment, the a  crack length, the W width of specimen, and 
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the plastic zone size, and the others are the same defined before.  
 

4.3.2 Plane strain state 
 

The solution for plane strain is  
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5. Finite element analysis  

 
Analytic solutions also have their limitations, and numerical method is important 

as well. We list a part of numerical solutions conducted by finite element method. 
 

5.1 Single edge crack under tension[14] 
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Fig. 5The CTOD of a finite size edge crack specimen of  

cellular/foam materials indifferent a
w  

The comparison between Fig.4 and Fig.5 shows the analytic and numerical 
solutions are in good agreementwith each other. 

 

5.2 Single edge crack under bending 
 
The elasto-plastic analysis of metal foam in terms of finite element is carried out, 

the plastic zone around crack tip is shown in Fig.6. 

 
Fig.6The plastic zone around crack tip 

 

6. Crack slowly growth  

 
The crack growth in the metal foams is significant, we discussed two cases and 

introduce as below. 
 

6.1 TG model [5,15] 



 

 
In the analysis we developed the singular perturbation, see Fan et al [5]. The 

constitutive law for TG model is, refer to equations (15) and (16) 
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The singular perturbation is taken as  
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in which 0 denotes the yield stress in uniaxial tension, s a parameter to be 

determined,
( ) ( ) 
ij

m
the expansion coefficients, R  the size of crack tip, and r  the 

distance measured from crack tip.  
The structure of the plastic zones around crack tip and the stress distribution are 

found by further analysis, but the results are omitted due to the limitation of space. 
 

6.2 DF model[6] 
 

The perturbation analysis and results are also constructed, but omitted due to the 
limitation of space. 
 

7. Crack fast propagation[5] 
 

Some approximate solutions for crack propagation in the material have been 
obtained as well but the discussions are omitted here. 

 

8. Fracture criteria 
 
Because the metal foams are plastic material, the fracture presents plastic 

behaviour, the fracture should be used the crack tip opening criterion rather than stress 
intensity factor criterion, i.e., 

  c
t t  (35) 

in which c
t is the critic value of t , a material constant, measured by experimental 

tests. In the above the main attention of our analysis lies in the determination of the 
crack tip opening displacements for various specimens, because the quantity presents 
the fundamental importance in the plastic fracture analysis.   

 

9. Conclusion and discussion  

 
The above discussion gives a comprehensive introduction on the plasticity of 

metal foams, plastic fracture theory and some solutions for cracked specimens with 
infinite and finite sizes. These solutions are useful to the theoretical and experimental 
studies. In the work the complex analysis is developed. 
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