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Abstract   

 
The work deals with the asymptotic stress-strain field around a crack tip, steadily propagating in a viscous 

material for antiplane conditions. A solution of this problem has been offered by Hui and Riedel, but with 

some unexpected features. In particular, the solution generally leads to an autonomous crack growth 

(independent on the loading state). This problem is revisiting here, using a multiscale asympotic analysis. 

Small scale yielding and low crack velocity are assumed. A small parameter , proportional to the crack 

growth rate, is introduced to switch from the inner solution (close to the crack tip) to the outer one (far field), 

using an asymptotic expansion of the solution. The outer solution is equivalent to the non linear elastic HRR 

field at the first order for while the viscosity appears at the second order. Close to the crack tip, the 

viscous effects arise at the first order and the corresponding asymptotic field is governed the elastic field 

associated to the crack velocity, while the non linear term, corresponding to the nonlinear elasticity emerges 

at the second order . This is a basic difference with the Hui-Riedel solution where the two scale orders are 

merged. The matching conditions allow to link the far and close fields, and to correct the paradox whereby 

the crack velocity should not depend to the far field governed by the loading (except for perfect plasticity 

( n  ) where the solution remains autonomous).  
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1. Introduction 
An antiplane asymptotic solution for a steadily slowly growing crack in an elastic-non linear 
viscous medium has been suggested by Hui and Riedel [1]. A power law creep is considered. For 
uniaxial tension, the Norton law has the following form : 

nB
 


 


   (1) 

For 3n   some paradox events arise, in particular the solution is autonomous, independent on the 
remote loading (this phenomenon is described by Bui as an analogy to the “soliton” in non linear 
waves problems [2]). Some authors have corrected this paradox, but with substantive changes to the 
law or introducing a threshold [3,4]. Keeping the original Norton law, a new antiplane shear 
analysis is offered here, using a matched asymptotic expansion method. Higher expansion terms of 
the stress function will allow to connect the « inner solution » (near the viscous crack tip) to the « 
outer solution » (corresponding to the far HRR field). 
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2. Initial problem formulation.  
 

Figure 1 shows the crack, embedded inside the body  , located in the (x,z) plane at y=0. The 
stress and strain tensors in antiplane conditions are : 

3 3, 2 , 1, 2i i i i i       (2) 

The equivalent stress is introduced as 2 2 1/2

1 2( )e    , so that the material law is (with 

( 1)

3
n

B B


 ) : 

1 , 1, 2ni
i e iB i

  


  


  (3), 

 
 
 
 
 
 
 
 
 

 

 
 

Figure 1 Crack steadily moving with velocity a  under shear load in mode III. 
 

The equilibrium equations are 0i i  , where the summation convention holds. The stress 

function is then introduced, so that the previous equation is automatically fulfilled : 

1 2

2 1

,
x x

  
  

 
 (4) 

The crack is assumed to grow steadily so that in the moving coordinate system the fields remain 
constant, which involves : 

1

a
t x

 
 

 
  (5) 

Using the compatibility of the strain rates, the following equation holds everywhere inside the body 
 : 

1 2,   

r 



1x

2x  

a
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3. Rescaling the problem. 
 

Dimensionless variables will be used now ( 1 1 2 2 1 2/ , / , ( , ) /x x a x x a x x      ). Furthermore, a 

small parameter 
n

a

Ba






 is introduced, so that the Hui-Riedel relation may be written as : 

1

1

0n
i e ix

          
 (7) 

with the boundary conditions : 1 2
1

0, 1 0, 0x x
x


    


 on the crack lips and 0( )i    

for the remote loading. Henceforth, the bar will be removed from all the following notations, to 
lighten the notations. The key ideas are firstly to distinguish two observation scales (the fields in the 
crack tip vicinity and the far fields), secondly to expand the stress function at higher orders for each 
scale, and finally to match these asymptotic expansions. This method has been already applied for 
instance in elastic-plastic materials [5] or for a series of cracks in the frame of elasticity [6,7].  

4. Asymptotic expansions of the stress function. 
 

It is supposed that the stress function is asymptotically expanded, and that each 
thi  expansion term 

is weighed by the parameter 
i . 

 

Far from the crack tip, r   in o , the expansion will be designed by “outer”, in the vicinity of 

the crack tip in i , it will be called “inner”. 

 

4.1. Outer expansion 
 
It is assumed that the stress function may be expanded as : 
 

31 2(1) (2) (3)

1 2 1 2 1 2 1 2( , ) ( , ) ( , ) ( , ) ...x x x x x x x x            (8) 

Developing with the previous relation the equivalent stress, we find that : 
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1 2 1 2 1( 1) 2( )1 (1) (1) (1) (2) (2) (2) ( 1)/2( . 2 . . ...)nn n

e i i i i i i

                          (9) 

The Taylor expansion of the previous expression is then : 
 

3 11 2 1 2 1 ( 2)( 1) ( 2) 2 ( 3)1 (1) (2) (3) ( )nn n nn

e O                        (10) 

where (1) (2) (3), ,    are functions depending on (1) (2), ,i i n    . Using the relation (10), the 

equilibrium equation is therefore in o  : 

 

3 12 1

2 1 2 1 2 1

(1) (2) (3)

1

2( )(1) (2) (3) (1) (2)

( ...)

( ...) ( ...) 0i i

x
  

     

 

      



  


       



         
 (11) 

where 1( 1) 1n    . 

The first term in the relation (11) is relative to the viscous behaviour near the crack tip. The second 
term relative to the non linear behaviour far from the crack tip must be dominant here. Thus : 

1( 1) 1 0, 1n n        (12) 

The outer equilibrium equation at the first order is then : 

 (1) (1) 0i i     (13) 

The following terms order is 2 1 ( 2) 1n      It is assumed now that : 

2 1( 2) 1 0n      (14) 

This assumption will be explained in a next section, and justified by matching considerations. 
Therefore, the final equilibrium for the outer expansion, at the first order is : 

 (1) (1) (2) (2) (1)

1

0i i ix
 

        


 (15) 

with 
1 3(1) (1) (2) (1) (1) (2), ( 1)

n n

i in 
 

            

4.2. Inner expansion 
 

In the neighbouring of the crack tip, a new variable designed as : i
i

x
y


  is used as a microscope 

focal. This variable change is one of the clue to explain the paradox of the autonomous solution (in 
the original analysis 1  ). The inner expansion is then assumed as : 

 

31 2(1) (2) (3)

1 2 1 2 1 2 1 2( , ) ( , ) ( , ) ( , ) ...x x y y y y y y           (16) 
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The equilibrium equation in i  is : 

 

 

3 12 1

2 1 2 2 1

(1) (2) (3)

1

2( )(1) (2) (3) (1) (2)

( ...)

( ...) ( ...) 0i i

y
  

     

     

       



  


     



       
 (17) 

where 1( 2) (1 ) 1n n       . We claim that : 

1( 2) (1 ) 1 0n n         (18) 

In fact, this parameter cannot be positive, otherwise the relation (17) would be the same as equ. (13) 
at the first order (note that in the Hui-Riedel analysis 0  ). At the order  , the equilibrium 
condition holds : 

(1)

1

0, iin
y


  


 (19) 

Transferring the expression (19) into (17), the remaining terms are of order 1 and 2 1     . Both of 
them must be considered, otherwise the solution regress to the HRR field or to the solution of (19). 
Therefore : 

2 1 0      (20) 

 

Finally, at the first order the inner equilibrium equation is (with 
1(1) (1) n

 


  ) : 

 (2) (1) (1)

1

0,i i iin
y
  

    


 (21) 

It may be noticed that at the micro-scale, contrary to the macroscopic scale, the Laplace operator is 
relative to the second term of the stress function expansion and the non linear term is relative to the 
first one. Starting from now, it is necessary to solve the equations (15) and (21). 
 

5. Stress functions solutions 
 

5.1. Singularity analysis 
 
From the equation (13), the singular HRR field emerges with : 

(1)

1 2 1 1( , ) ( )sx x K r f more regular terms   ,  (22) 

with 
1

n
s

n



, and where 1K  will be clarified in a further section. Injecting the expression (22) 
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inside the complete equilibrium equation (15) allows to compute the second term (2)  : 

(2)

1 2 1 1 2 2( , ) ' ( ) ( )s tx x K r f K r f more regular terms      (23) 

the exponent t  is deduced from s , so that : 
2

1

n
t

n





 (24) 

A HRR field with higher order terms has been established for far fields. To clarify the fields close to 
the crack tip, it is necessary to use matching conditions.  
 

5.2. Matching outer and inner expansions. 
 
For the inner expansion, equilibrium equations (19) and (21) have only free stress boundary 

conditions on the crack lips, and no outer boundary conditions since i  is unbounded. The 

matching conditions will substitute to these latter, and involve that in the overlapping area, the inner 
expansion matches the outer one for small   values. The asymptotic matching principle will then 
applied [8]. The first outer term (respectively the first inner term) is rewriting in inner variable (resp. 

outer variable), with r    (resp. 1 1
1 1( , )

x x
y y

  
  , and the relation (22) becomes : 

1 1(1) (1)

1 2 1 1 1 2( , ) ( ) ... ( / , / ) ...s sx x K f x x               (25) 

 , which leads to the supplementary relation : 
 

1 1 s     (26) 

When 0,   , the first order matching holds : 

(1)

1 2 1 1( , ) ( )sy y K f  �   (27) 

Let’s tackle now the resolution of (19). 

(1)

1 2 1 1 1 2( , ) ( ) ( , )sy y K f y y       (28) 

where 1 2( , )y y  is of order , ,p p s for    

Moreover, the classical solution of linear elasticity is valid for the relation (19) : 

1/2

1 2
ˆ( , ) sin

2IIIy y K
   (29) 

Inserting the first term of (28) into (19) : 

1
1 2

1

( )
( , )

s f
y y

y

  
 


 (30) 

and reporting (28),(29),(30) in (19), the function 1 2( , )y y  may be found, solving the problem : 
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 (31) 

Using the same way as in (25), the expansions second terms are matched : 
 

1 1 2 1 2(1) (2)

1 2 1 1 1 1 2 1 2( , ) ( ) ( ) . ( / , / ) ( / , / )s s sx x K f f x x x x                             (32) 

and the supplementary condition holds : 

2 1

1

2
s       (33) 

 
 
 

5.3. Complementary matching using path-independent integrals. 

The problem unknowns are 1 2 1 2( , , , , )      and considerations about dominant terms at each 

scale allow us to determine four relations (14,19,27,33). The missing relation will be built up 
starting from energy considerations. It is well known that for HRR fields [9,10] the crack-tip 
fracture behaviour may be characterized by a  path-independent line integral, where   is a line 
circumscribing the crack tip : 
 

1

1

( . )
u

J n n ds
x

 



 

  (34) 

where   is the material strain energy density and n  the outer normal to the line  . For a 
steadily moving crack under creep conditions, a similar path-independent has been offered [11,12] : 
 

*

1

1

( . )
u

C n n ds
y

 



 

  (35) 

Developing the two integrals, respectively for the far and the near crack tip fields, the following 
relations hold : 

1

1

( 1) 1

1

2* 2

n n

III

J K I

C K



 




 







 (36) 

In the transition area, the integral values have to coincide, so that : 
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1 12 ( 1)n      (37) 

 
 

5.4. Summary of the results. 
 
The equations (14,19,27,33,35) may be summarized : 
 

1 2

2 1

1 1

2 2

1 1

0

( 2) 1 0

,
1
2

,
1

2 ( 1)

n

n
s with s

n
n

p with p
n

n

  
 

  

  

  

  
    

   
 
    


   

 (38) 

with 1( 2) (1 ) 1 0n n         

which leads to the solutions : 
 

1

1

2

2

( 1)

( 1)

1

( 1)

1

( 1)

3

( 1)

n

n

n

n

n

n

 







   
  
  


  



  (39) 

The parameter   depends on the hardening coefficient. For 1  , no zoom is available (this is 

the case of the Hui-Riedel analysis) so that the connection between the remote fields and the 
viscous fields is impossible (unless 3n  ). When n   (perfect plasticity), 1  , there is no 

matching again, and therefore an autonomous solution, but in an asymptotic way, which is natural 
because the material yields without supplementary loading.  
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6. Conclusions and outlines. 
 
The matched asymptotic expansion method affords to connect the H.R.R. far fields and the fields 
near a crack tip steadily moving under creep conditions, as described in the Hui-Riedel analysis. 
The space variable magnifying designed by   allows to adjust the viscous dominant area size 
with respect to the crack velocity and the material properties. The Hui-Riedel analysis is a particular 
case where no zoom is used ( 1  ). A significant work remains to achieve a complete solution 

setting up. A further step in the analysis is to used this scaling method with the time variable, so as 

to break the assumption 1
n

a

B



 . The study must be also completed by the angular functions 

resolve. 
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