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Abstract

The work deals with the asymptotic stress-strain field around a crack tip, steadily propagating in a viscous
material for antiplane conditions. A solution of this problem has been offered by Hui and Riedel, but with
some unexpected features. In particular, the solution generally leads to an autonomous crack growth
(independent on the loading state). This problem is revisiting here, using a multiscale asympotic analysis.
Small scale yielding and low crack velocity are assumed. A small parameter ¢, proportional to the crack
growth rate, is introduced to switch from the inner solution (close to the crack tip) to the outer one (far field),
using an asymptotic expansion of the solution. The outer solution is equivalent to the non linear elastic HRR
field at the first order for =0, while the viscosity appears at the second order. Close to the crack tip, the
viscous effects arise at the first order and the corresponding asymptotic field is governed the elastic field
associated to the crack velocity, while the non linear term, corresponding to the nonlinear elasticity emerges
at the second order . This is a basic difference with the Hui-Riedel solution where the two scale orders are
merged. The matching conditions allow to link the far and close fields, and to correct the paradox whereby
the crack velocity should not depend to the far field governed by the loading (except for perfect plasticity
(n — o) where the solution remains autonomous).
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1. Introduction

An antiplane asymptotic solution for a steadily slowly growing crack in an elastic-non linear
viscous medium has been suggested by Hui and Riedel [1]. A power law creep is considered. For
uniaxial tension, the Norton law has the following form :

:§ =2 +Bo" (1)
y7;
For n>3 some paradox events arise, in particular the solution is autonomous, independent on the
remote loading (this phenomenon is described by Bui as an analogy to the “soliton” in non linear
waves problems [2]). Some authors have corrected this paradox, but with substantive changes to the
law or introducing a threshold [3,4]. Keeping the original Norton law, a new antiplane shear
analysis is offered here, using a matched asymptotic expansion method. Higher expansion terms of
the stress function will allow to connect the « inner solution » (near the viscous crack tip) to the «
outer solution » (corresponding to the far HRR field).
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2. Initial problem formulation.

Figure 1 shows the crack, embedded inside the body €, located in the (x,z) plane at y=0. The
stress and strain tensors in antiplane conditions are :

1, =0,,7, =28, 1=12 (2)

1/2

The equivalent stress is introduced as r, =(z/+7;)"*, so that the material law is (with

B :\/§(n+l)B) :

7 =2 +Brr, i=12 (3),
y7i

Figure 1 Crack steadily moving with velocity a under shear load in mode III.

The equilibrium equations are V,z, =0, where the summation convention holds. The stress

function is then introduced, so that the previous equation is automatically fulfilled :

oY oY
L=""F"" T, =/ (4)
oX, OX,
The crack is assumed to grow steadily so that in the moving coordinate system the fields remain
constant, which involves :
¥ __ v g
ot OX,
Using the compatibility of the strain rates, the following equation holds everywhere inside the body
Q:
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_AY BV, (z/'V,¥)=0 (6)
M OX,

3. Rescaling the problem.
Dimensionless variables will be used now (X =x /a,X,=x,/a, ¥(X,X,) =¥/ u). Furthermore, a

small parameter ¢ = Ea — is introduced, so that the Hui-Riedel relation may be written as :
au

—gA% +V, [ 7V P]=0 (7)

with the boundary conditions : Z_—\P =0, -1<Xx <0,X,=0 on the crack lips and z,(0Q)=r,
X

for the remote loading. Henceforth, the bar will be removed from all the following notations, to
lighten the notations. The key ideas are firstly to distinguish two observation scales (the fields in the
crack tip vicinity and the far fields), secondly to expand the stress function at higher orders for each
scale, and finally to match these asymptotic expansions. This method has been already applied for
instance in elastic-plastic materials [5] or for a series of cracks in the frame of elasticity [6,7].

4. Asymptotic expansions of the stress function.

It is supposed that the stress function is asymptotically expanded, and that each i expansion term

is weighed by the parameter €”.

Far from the crack tip, r>>¢ in Q_, the expansion will be designed by “outer”, in the vicinity of

the crack tip in €, , it will be called “inner”.

4.1. Outer expansion

It is assumed that the stress function may be expanded as :

P (X, %,) = e PO (X, %) + 2P D (X, %)+ PO (%, %) +... (8)

Developing with the previous relation the equivalent stress, we find that :
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7 = g OV (V POV P 4255y POV PO 4 gy pO g p@ g Yoz (g)

The Taylor expansion of the previous expression is then :

z-:*l =ga1(n*1)o.(1)+gaz+a1(n*2)0(2) +82az+a1(n*3)0(3) +O(€D‘3+al(n’2)) (10)
where o,0®,c® are functions depending on V¥ VW n. Using the relation (10), the

equilibrium equation is therefore in Q, :

a Oy_ o3 O
_A_(\Il(l) + g% 1\}1(2) + g% 11{1(3) +...)+

11

eV, ((a‘” +e7 10?4 g 4 WV (PY + gY@ 4 )) =0 ()
where v=¢,(n-1)-1.
The first term in the relation (11) is relative to the viscous behaviour near the crack tip. The second
term relative to the non linear behaviour far from the crack tip must be dominant here. Thus :

v=a,(n-1)-1<0, Vvnx1 (12)
The outer equilibrium equation at the first order is then :
V,(c“V¥?)=0 (13)
The following terms order is &2 1t is assumed now that :
a,+a,(N-2)-1=0 (14)

This assumption will be explained in a next section, and justified by matching considerations.
Therefore, the final equilibrium for the outer expansion, at the first order is :

A2y +V, (c“V¥? + 5OV PP ) =0 (15)
%,

n-1

with o =[[v ¥® A RIA T

0@ =(n-1|v ¥®

4.2. Inner expansion

In the neighbouring of the crack tip, a new variable designed as : 'y, =—- is used as a microscope
&

focal. This variable change is one of the clue to explain the paradox of the autonomous solution (in
the original analysis /£ =1). The inner expansion is then assumed as :

F(x, %) =0V (y,, Y,)+&"0?(y,,v,) + €0 (Y., ¥,) +...(16)
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The equilibrium equation in €3, is:

_g(sAi((/)(l)+gﬂz,ﬂl¢(z>+gﬂm(p<3)+___)+
o, a7

V. ((T(l) + gl @ 4 G25P () +...)Vi((0(l) +gﬂz,ﬂl(p<2) +...))=0
where 6=/ (n-2)+ £,(1-n)+1. We claim that :

o= (-2)+p,1-n)+1<0 (18)

In fact, this parameter cannot be positive, otherwise the relation (17) would be the same as equ. (13)
at the first order (note that in the Hui-Riedel analysis 6 =0). At the order &°, the equilibrium
condition holds :

A p®—0, ine, (19)

Y,

Transferring the expression (19) into (17), the remaining terms are of order 1 and &°*>*. Both of
them must be considered, otherwise the solution regress to the HRR field or to the solution of (19).
Therefore :

5+ﬂ2_ﬂ120 (20)

n—l) :

Finally, at the first order the inner equilibrium equation is (with 7 =[V ¢®

_Aai¢<z> +V,(s"V,p?) =0, InQ, (21)

1

It may be noticed that at the micro-scale, contrary to the macroscopic scale, the Laplace operator is
relative to the second term of the stress function expansion and the non linear term is relative to the
first one. Starting from now, it is necessary to solve the equations (15) and (21).

5. Stress functions solutions

5.1. Singularity analysis

From the equation (13), the singular HRR field emerges with :
YO (x,x,)=Kr*f (0)+more regular terms, (22)

with s:il, and where K, will be clarified in a further section. Injecting the expression (22)
n+
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inside the complete equilibrium equation (15) allows to compute the second term W@ :
W (x,x,) =K' rf(0)+K,rf,(0)+more regular terms (23)
the exponent t is deduced from s, so that :
t=n—_2 (24)
n+1

A HRR field with higher order terms has been established for far fields. To clarify the fields close to
the crack tip, it is necessary to use matching conditions.

5.2. Matching outer and inner expansions.

For the inner expansion, equilibrium equations (19) and (21) have only free stress boundary

conditions on the crack lips, and no outer boundary conditions since €, is unbounded. The

matching conditions will substitute to these latter, and involve that in the overlapping area, the inner
expansion matches the outer one for small ¢ values. The asymptotic matching principle will then
applied [8]. The first outer term (respectively the first inner term) is rewriting in inner variable (resp.

outer variable), with r=¢”p (resp. (y, :iﬂ, Y, :%) , and the relation (22) becomes :
&

&
YO (x,x%,)=Ke " p f(0)+...= "oV (x [ &’ %, | £”) +...(25)

V&, which leads to the supplementary relation :

pi=o,+fs (26)

When ¢ — 0, p — o, the first order matching holds :

" (Y )0 K £(0)  (27)
Let’s tackle now the resolution of (19).

PV (Y, Y,) =K p 1,(0)+d(y,.y,) (28)

where ¢(y,,y,) isoforder p° p<s, for p—> o

Moreover, the classical solution of linear elasticity is valid for the relation (19) :
F 1) = Ky sin . (29)

Inserting the first term of (28) into (19) :

op*f.(0)
Y,) = A2 (30
(Y, Y,) Y (30)

1

and reporting (28),(29),(30) in (19), the function ¢(y,,y,) may be found, solving the problem :
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A% _kcsing,
y.

1

2y—‘/~: ~0, vy, e]-0,0[, (31)

@ — ¢ for |y| > oo

Using the same way as in (25), the expansions second terms are matched :

P(x,X%)=Keehp f(0)+e2e” p*f(0)+.= "V (X [ ", %, 1 ")+ " (x | £, %, 1 ") (32)
and the supplementary condition holds :

@ = - f+fs (33

5.3. Complementary matching using path-independent integrals.
The problem unknowns are (e,,a,, S, 5,, ) and considerations about dominant terms at each

scale allow us to determine four relations (14,19,27,33). The missing relation will be built up
starting from energy considerations. It is well known that for HRR fields [9,10] the crack-tip
fracture behaviour may be characterized by a I’ path-independent line integral, where T is a line
circumscribing the crack tip :

J :L (n, —a.nS—:) ds (34)

where @ is the material strain energy density and n the outer normal to the line T". For a
steadily moving crack under creep conditions, a similar path-independent has been offered [11,12] :

. ou
C = —o.n—)ds (35
[ (@n, ong)ds 39

Developing the two integrals, respectively for the far and the near crack tip fields, the following
relations hold :

J — g(n+l)a1 Kln+1|
(36)

*_ 2B-B 2
C =¢ K.,

In the transition area, the integral values have to coincide, so that :
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2, -p=[+Da, (37)

5.4. Summary of the results.

The equations (14,19,27,33,35) may be summarized :

5_ﬂ1+ﬂ2 =0
a,+a,(n-2)-1=0

B =a,+ps,

a, :ﬂz -Bp,
24, - p=(M+Da,

with 6= (n-2)+ F,(1-n)+1<0

which leads to the solutions :

. n
with s=——
n+1 (38)

with p=

. (n+])
ﬂ_ﬂl_ (n—l)
1
a =
(n-1)
1
a, =
(n-1)
_ n+3
ﬂz - (n—1)

n+2
n+1

(39)
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The parameter £ depends on the hardening coefficient. For g =1, no zoom is available (this is
the case of the Hui-Riedel analysis) so that the connection between the remote fields and the
viscous fields is impossible (unless n<3). When n— o« (perfect plasticity), g —1, there is no
matching again, and therefore an autonomous solution, but in an asymptotic way, which is natural
because the material yields without supplementary loading.
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6. Conclusions and outlines.

The matched asymptotic expansion method affords to connect the H.R.R. far fields and the fields
near a crack tip steadily moving under creep conditions, as described in the Hui-Riedel analysis.
The space variable magnifying designed by &” allows to adjust the viscous dominant area size
with respect to the crack velocity and the material properties. The Hui-Riedel analysis is a particular
case where no zoom is used (4 =1). A significant work remains to achieve a complete solution
setting up. A further step in the analysis is to used this scaling method with the time variable, so as

to break the assumption %«1 . The study must be also completed by the angular functions
MU

resolve.
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