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Abstract  For a plate with large deformation, where the possible fracture will be initiated is an important 
problem. It is true that the defects or voids of material usually are the initial positions. However, the more 
important problem is the local defect (fatigue-fracture) caused by the global deformation of medium, as this 
problem is very common in practical engineering. For this purpose, two sets of non-linear motion equations 
of deformation established in rational mechanics frame are used to study this problem. The stress 
concentration problem is defined as: for a given deformation, how the stresses are distributed to meet the 
motion equations under the cost of fatigue-fracture within the plate. The motion equations show that the local 
curvature is the main cause of fatigue-fracture. Taking the local deformation curvature as a parameter 
function, the stress transportation solution is obtained. The result shows that: for plate bending, the stress is 
varied in exponential law with the path-integral of local curvature of plate. In non-destructive detect, when 
the pressure wave data are recorded in an array, they can be used to inverse the intrinsic local curvature of 
target medium region. Then, the “inversed” local curvature can be used to predict the potential 
fatigue-cracking initiation region. 
 
Keywords  Nondestructive detect, Stress concentration, Stress transportation, Non-linear motion equation, 
Large deformation 
 
1. Introduction 
 
Stress concentration usually is addressed by the irregular boundary problems [1-3]. As a simple 
example, for a plate with small hole, the stress around hole will be increased rapidly when the 
in-plane stretching is increased. To express the effects of stress concentration, a factor (defined as 
maximum stress over name stress) is introduced. Its shortage is that the voids geometry features are 
required. Then, taking the voids as boundary, the motion equations are used to calculate the factor 
based on theoretic solutions. The crack tip field theory is fully developed along this theoretic line. 
Hence, it is understandable that many researchers focus on their attention upon micro-scale 
phenomena. However, based on experiences, we usually have no ad-hoc information about where 
the defects exist. What we want to know is where the fatigue-fracture will be initiated? The 
micro-scale structure description has little help on this topic. Generally, for uniform continuum, the 
stress concentration phenomena can be attributed to the cause of the defects of micro-scale 
structures. For a plate with arbitral deformation, the real fatigue-fracture frequently appears in the 
highest curvature position or the position inherited with large scale deformation or singularity. On 
phenomenon sense, the defects or voids of material were produced by the macro deformation in 
space-time domain. 
Recently, how the macro deformation alters the microstructures of material is raised as an important 
problem for fracture mechanics. The dual scale or multiscale viewpoint is proposed to answer how 
the macro deformation causes the microstructure instability [4-6]. To answer this question, the first 
problem is returned to the question about where the stress will be concentrated. This problem may 
be answered by formulating related motion equations. 
For this purpose, two sets of non-linear motion equations of deformation [7] established in rational 
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mechanics frame [8] are used to study this problem. One set of equations corresponds to linear 
momentum conservation, and another set of equations corresponds to angular momentum 
conservation. Then, the fatigue-fracture is initiated by local asymmetrical stress (which is related 
with local curvature [9]), although it may be very small comparing with the symmetrical stress. 
Hence, the research is looking for the “omitted” items in classical mechanics. 
In this research, the stress concentration problem is defined as: for a given deformation, how the 
stresses are redistributed to meet the motion equations under the cost of fatigue-fracture within the 
plate. The motion equations show that the local curvature is the main cause of fatigue-fracture (in 
classical plate stability problem, the local curvature plays the similar role in von Karman equations 
[10]). Taking the local deformation curvature as a parameter function, the stress transportation 
solution is obtained. The result shows that: for plate bending, the stress is varied in exponential law 
with the path-integral of local curvature of plate.  
For bending with harmonic local curvature, the integral along any path tends to be small, then, there 
is no stress concentration potential. However, for bending with monotone local curvature, the 
integral along any path tends to be large. Then, referring to a given stress position (as the 
path-integral starting point), the stress concentration will appear at the positions with maximum of 
path integral. In non-destructive detect, when the pressure wave data at different frequencies are 
recorded in an array, they can be used to inverse the intrinsic local curvature of target medium 
region. Then, the “inversed” local curvature can be used to predict the potential fatigue-cracking 
initiation region. 
 
2. General Equations for Large Deformation 
 
For large deformation, the deformation tensor (defined by displacement gradient) was introduced by 
Truesdell [11] and is named as a two-point tensor. Viewing that the base vector transformation for 
commoving dragging coordinator (natural coordinator) uniquely defines the deformation between 
initial configuration and current configuration, Chen Zhida [8, 12] established a new formulation 
for rational mechanics. This theoretic formulation is based on point-set transformation and is 
briefed as following. For a set of co-moving dragging coordinators defined in continuum, a material 
point is coordinated as ( 321 ,, xxx ). For initial configuration, the base vector is expressed as 
( )(),(),( 0

3
0
2

0
1 xgxgxg ρρρ ). For current configuration, the base vector is expressed as 

( )(),(),( 321 xgxgxg ρρρ ). Then, the differential distance vector between two material points is 
expressed as: )()( 0

0 xgdxxsd i
i ρρ

=  (here and after repeating index summation convention is applied 
for 3,2,1=i ) for initial configuration; )()( xgdxxsd i

i ρρ
=  for current configuration (here and after, 

repeat index summation convention is used).  

For large deformation, the deformation tensor )(xF i
j  (the coordinator dependence x  will be 

omitted below and after) is defined by base vector transformation equation (point-sets group 
transformation): 

        00 )( ji

jj
ij

j
ii gugFg ρρρ

+== δ .                           (1) 

Where, ju  is displacement field defined in initial configuration, the covariant derivative 
i
 is 

performed in initial gauge field.  
The Cauchy strain tensor is defined as: 
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i

jj
i

j
i

j
i uF =−= δε .                             (2) 

For simple idea isotropic elastic continuum, the stress tensor is defined as a mixture tensor 
)( 0

j
ij

i gg ρρ
⊗σ  [7-9] through constitutive equations: 

         j
i

j
i

k
k

j
i μεδλεσ 2+= .                             (3) 

In engineering sense, the stress tensor component j
iσ  is explained as the surface force acting on 

current face igρ  in the direction 0
jgρ . In fact, this engineering interpretation is widely used in 

mechanics textbooks about stress tensor ijσ  (a kind of logic weakness on the sense that which one 
index represents surface or which one represents direction). For this mixture stress definition, the 

physical components of stress tensor are defined as j
i

ii

jjj
i g

g
σσ

)(

0
)(~ = . Surely, the stress symmetry in 

engineering stress sense does not mean the stress is symmetrical in intrinsic sense. 
Then, as logic consequence, the stress differential for large deformation is: 

         l
ik

j
l

j
lk

l
ik

j
i

k

j
i x

Γ−Γ+
∂
∂

= ~σσσσ .                       (4) 

Where, the connection i
jkΓ is defined in initial configuration; i

jkΓ~ is defined in current configuration. 
Without losing generality [7], taking the initial configuration in standard rectangular coordinator 
system to make a simplification that 0=Γ i

jk , it can be simplified as: 

        k

l
ij

lk

j
i

k

j
i xx ∂

∂
−

∂
∂

=
εσσσ  .                              (5) 

It shows that the non-linear items for large deformation are mainly originated from strain gradient 
and large stress. In resent years, the role of strain gradient has been studied extensively. 
In rational mechanics of Chen formulation [7-9], the motion equations are classified into two 
categories as: covariant form and anti-variant form. In deformation mechanics, they must be 
satisfied at the same time. Generally speaking, the anti-variant force corresponds to linear 
momentum conservation and the covariant force corresponds to angular momentum conservation.  
For large deformation with body force 0

i
i gff ρρ

=  in local standard rectangular coordinator system, 
the anti-variant form of motion equation (linear momentum conservation) is: 

           i
j

l
ji

lj

i
j f

xx
=

∂
∂

−
∂
∂ ε

σ
σ

.                              (6) 

The covariant form of motion equation (angular momentum conservation) is: 

         j
i

j
j

l
ij

lj

j
i Ff

xx
=

∂
∂

−
∂
∂ εσσ .                           (7) 

In von Karman elastic shell theory the item jj

l

j

l
j

xx
u

x ∂∂
∂

−=
∂
∂

−
2ε

( 2,1,,3 == jil ) is related with the 

curvature of shell or plate. So, the Eq.6 should be viewed as von Karman equation. Following this 
curvature interpretation, it is concluded that: for high stress deformation, the curvature produced by 
deformation must be taken into consideration.  
 
3. Geometrical Equations for Plate Bending 
 
For simplicity, the initial configuration of central plan is taking as standard rectangular coordinator 
system ( 21, xx ). Hence, the plate is described as a two dimension manifold. The thickness direction 
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is taken as coordinator ( 3x ). In this research, the plate bending problem is described by 
unit-orthogonal transformation of base vector as: 
          0

j
j

ii gRg ρρ
= .                                 (8) 

Where, for plate bending, based on Chen’s S+R additive decomposition of deformation tensor [7-9], 
the tensor j

iR  is defined as: 
       k

i
j
k

j
i

j
i

j
i LLLR )cos1(sin Θ−+⋅Θ+= δ .                          (9) 

Where, the Θ  is local whole rotation in average sense (local curvature) [12], and the tensor j
iL  is 

the rotation direction.  
The related items are expressed by the displacement fields as: 

       23

1

1

3
1
3

3
1 )(

sin2
1 L

x
u

x
uLL =

∂
∂

−
∂
∂

Θ
=−= ,                     (10-1) 
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x
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∂
∂

−
∂
∂

Θ
=−= ,                     (10-2) 
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u

∂
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−
∂
∂

+
∂
∂

−
∂
∂

=Θ .                 (10-4) 

For plate bending, as the gauge tensor is invariant, the geometrical conditions [7-9] are obtained as: 

         2
21

1

))(cos1( L
x
u

Θ−−=
∂
∂ ,                        (11-1) 

         2
12

2

))(cos1( L
x
u

Θ−−=
∂
∂ ,                        (11-2) 

        )1)(cos1()(
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−Θ−−=
∂
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+
∂
∂ ,               (11-3) 
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3

Θ−−=
∂
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x
u ,                        (11-4) 
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+
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u ,                         (11-5) 

          0)(
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=
∂
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+
∂
∂

x
u

x
u .                        (11-6) 

Combining Eqs.10 and Eqs.11, it is easy to find out that: all j

i
i
j x

u
∂
∂

=ε  are non-zeros, and the plate 

bending is completely determined by three independent quantities: )(xΘ , )(1 xL , and )(2 xL . Note 

that for small Θ , the 2

2
1)cos1( Θ≈Θ−  is higher order smaller. The corresponding Cauchy stress 

components are defined by Eq.3. In engineering, the effective stresses (which contain non-linear 
effects) are used as a convention. In this research, the effective stress fields in the plate are studied 
by motion equations to study stress concentration problem. 
 
4. Effective Stress Concentration for Plate Bending 
 

Letting l
j

l
j

x
κ

ε
=

∂
∂

 ( 3,2,1=l ) as local curvature functions, based on Eq.6, the anti-variant motion 
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equations are rewritten as: 

             iji
jj

i
j f

x
=−

∂
∂

κσ
σ

                               (12) 

As the plate bending is dominated by out-plan displacement 3u measured by central plane 
coordinator (commoving dragging coordinator system), by Eqs.10 and Eqs.11, the curvature 
functions can be approximated as: 

      2
1

1
2

22

32

11

32
3 )sin()sin(

x
L

x
L

xx
u

xx
u

∂
Θ∂

+
∂

Θ∂
=

∂∂
∂

+
∂∂

∂
=κ               (13-1) 

        3
2

31

32
1 )sin(

x
L

xx
u

∂
Θ∂

=
∂∂

∂
−=κ                         (13-2) 

        3
1

32

32
2 )sin(

x
L

xx
u

∂
Θ∂

=
∂∂

∂
−=κ                         (13-3) 

By these equations, the local curvature functions are the gradient of global bending curvature. In 
classical plate theory, the 1κ  and 2κ  are taken as linear function about thickness and are 
explained as curvature variation along thickness direction.  
For fatigue-fracture problems, as the deformation is given, so the effective stress is varied to meet 
the motion equations.  
Observing Eq.3, the effective stress field i

jσ~  can be defined by the following equation: 

        iji
jj

i
j

j

i
j f

xx
=−

∂
∂

=
∂
∂

κσ
σσ~

                             (14) 

Then the effective stresses meet classical motion equations. Omitting the derivatives of curvature 
functions (as first order approximation), one simple form solution for effective stress is: 
       )exp()()(~

0

lx

x
li

j
i
j dxxx ∫−⋅= κσσ                            (15) 

Where, the 0x  is a reference point waiting to be determined by boundary conditions and loads. 
This solution means that: local effective stress is redistributed by the path-integral of global 
curvature functions. Therefore, stress concentration may appear somewhere. Based on Eq.3, for the 
effective stress, the constitutive equation is: 
       )exp()2(~

0

lx

x
lj

i
j

i
k
k

j
i dx∫−⋅+= κμεδλεσ                      (16) 

It says that: for effective stress, the elasticity parameters are exponentially varied with the 
path-integral of curvature functions. In engineering mechanics, the increased elasticity is named as 
hardening and the decreased elasticity is named as softening. Then, by the above equations, the 
effective elasticity of bending plate has both effects. In engineering sense, the effective elasticity is 
varied by bending deformation significantly. 
To make its meaning clear, the thickness effects can be expressed as: 

       )exp()(~)(~ 3
0

3

0

3

33 dxxx x

x

i
jx

i
j ∫−⋅=

=
κσσ                       (17) 

It shows that the effective stresses are exponentially distributed on thickness direction. In classical 
plate theory, the linear approximation is assumed. 
It shows that: the effective stress on central plan parallel surface is exponentially varied with 
path-integral of curvature along thickness direction. So, the effective stress will concentrated on one 
surface parallel to central plan. If the local curvature is big enough, the fatigue-fracture may be 
initiated as surface cracking parallel to central plan (surface sliding or buckling). In some researches 
[13-15], the thickness direction stress concentration effects are studied under the terms distension or 
post-buckling). The above equation shows that, for given curvature, the plate thickness is limited by 
stress concentration effects along thickness direction. 
Similarly, taking the effective stress at some potions as reference, the scale effects can be expressed 
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as effective stress transportation along plan directions as: 

       )exp()(~)(~ 11
1

1
0

1
0

1 dxxx x

xx

i
jx

i
j ∫−⋅= κσσ                       (18-1) 

       )exp()(~)(~ 22
2

2
0

2
0

2 dxxx x

xx

i
jx

i
j ∫−⋅= κσσ                       (18-2) 

They show that: the effective stresses on central plan parallel surface are exponentially varied with 
path-integral of curvature along scale directions. So, the effective stress will concentrated on one 
side. If the local curvature is big enough, the fatigue-fracture may be initiated as surface cracking 
line (surface fracture). Therefore, for given curvatures, the plate scale is limited by stress 
concentration effects along plan directions. 
For spatial harmonic bending with spatial frequencies ),,( 321 kkk , )sin( 3

3
2

2
1

10 xkxkxkii ++= κκ , 
the path-integral values depends its corresponding spatial scales ( 321 /1,/1,/1 kkk ). Therefore, 
multi-scale effects are very significant [4-6] for stress concentration phenomenon or fracture 
problems. This explains why microstructure analysis is always dominating the theoretic 
development about fatigue-fracture mechanism. 
For forward problems of non-destructive detect, the central plan bending functions )(xΘ , 

)(1 xL ,and )(2 xL  are measured directly. Then, the curvature functions can be calculated by Eqs.13. 
In this case, the stress concentration effects can be evaluated by the Eqs.18. 
For inverse problems of non-destructive detect, when the effective stress data can be acquitted, the 
Eqs.18 can be used to estimate the curvature functions. By the estimated curvatures, the potential 
fatigue-fracture positions can be predicted. 
For supersonic wave methods, a lot of technology to get effective elasticity is available. By Eq.16, 
the effective elasticity for wave (incremental deformation [16]) is determined as: 
      )exp()](2)(~

0

lx

x
lj

i
j

i
k
k

j
i dx∫−⋅Δ+Δ=Δ κεμδελσ                   (19) 

So, as the original elasticity is known parameter, the curvature functions can be inversed. Therefore, 
stress concentration effects can be predicted. 
 
5. Stress Concentration Caused by Load 
 
Usually, the typical plate bending is produced normal loading (defined by 021 == ff ). By 
subtracting Eq.6 and Eq.7, the asymmetrical stress motion equations are obtained as: 

       )(sin)( 11
2

3
3

1
3

3
1

j

l
j

lj

l
j

l xx
Lf

x ∂
∂

−
∂
∂

+⋅Θ=
∂
−∂ ε

σεσσσ ,              (20-1) 

       )(sin)( 22
1

3
3

2
3

3
2

j

l
j

lj

l
j

l xx
Lf

x ∂
∂

−
∂
∂

+⋅Θ−=
∂
−∂ ε

σεσσσ ,          (20-2) 

       )()()( 33
2

3
2

2
3

1

3
1

1
3

j

l
j

lj

l
j

l xxxx ∂
∂

−
∂
∂

=
∂
−∂

+
∂
−∂ ε

σεσσσσσ .            (20-3) 

Where, the approximation j
i

j
i

j
i LR ⋅Θ+≈ sinδ  is applied. By Eq.3 and Eqs.11, the 

non-symmetrical stress components are 3
1σ , 1

3σ , 3
2σ , and 2

3σ . They are expressed as: 
         Θ=−= sin2 2

1
3

3
1 Lμσσ ,                        (21-1) 

         Θ=−= sin2 1
3
2

2
3 Lμσσ .                        (21-2) 

So, letting: )( j

l
ji

lj

l
ij

li xx
w

∂
∂

−
∂
∂

=
ε

σεσ , the asymmetrical stress motion equations are rewritten as: 
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x

L
+⋅Θ=

∂
Θ∂μ                    (22-1) 

        21
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3
1 sin)sin(4 wLf
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L
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− μ                  (22-2) 

        32
1

1
2 )sin(4)sin(4 w

x
L

x
L

=
∂

Θ∂
+

∂
Θ∂

− μμ                 (22-3) 

Where, the third motion equation is used to determine the whole bending along plan direction.  
Referring to the solutions 

02 3)sin(
=

Θ
f

L  at central plan for 03 =f , the body force caused 

asymmetrical stresses concentration in thickness direction are obtained as: 

     )
4

exp(])
4

exp(
2
1[ 3

0

3

0
33

0

3
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3
1

3
1

33 3

33 dxfdxdxfw xx x

ff ∫∫ ∫ ⋅−+=
= μμ

σσ        (23-1) 

     )
4
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2
1[ 3

0

3

0
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0

3

20

3
2

3
2

33 3

33 dxfdxdxfw xx x

ff ∫∫ ∫ ⋅−−=
= μμ

σσ        (23-2) 

It shows that: the local body force (load) will cause local asymmetrical stress concentration along 
thickness direction with exponential law about thickness. If the local curvature at free load is big 
enough, the load-caused stress concentration will be significant for thick plate. Then, 
fatigue-fracture may be initiated. 
It also shows that, at local load position, the asymmetry stress and non-linear effects will be very 
significant for thick plate bending, where wrinkling [17] may be produced.  
 
6. Stress Concentration for Kirchhoff Approximation 
 
The bending momentum motion equations, as the results of Kirchhoff approximation theory of plate, 
are widely used in engineering. How to estimate the stress redistribution caused by thickness and 
global curvature is a practical problems. As many linear results are well-known, how the non-linear 
behaves will be exposed in this section. 
Using the approximation j

i
j

i
j

i LR ⋅Θ+≈ sinδ , for the typical plate bending produced by normal 
loading (defined by 021 == ff ), the Eq.12 will be used to obtain the bending momentum motion 

equations in Kirchhoff approximation. Letting )(
2
1 j

i
i
jij σσσ += , the plate bending momentums 

ijM  ( 2,1, =ji ) in Kirchhoff plate theory are defined as: 

         332/

2/
dxxM D

D ijij ∫−= σ                             (24-1) 

Where, D  is plate thickness. Noting that, by Eqs.11 and Eq.3, 03113 ==σσ  and 03223 ==σσ , 
so, the Kirchhoff assumption is automatically satisfied. The load vector components are defined as: 

        332/

2/ 2
3

1 sin
2
1 dxxLfQ D

D
⋅⋅Θ= ∫−                       (24-2) 

        332/

2/ 1
3
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2
1 dxxLfQ D

D
⋅⋅Θ= ∫−                       (24-3) 

         332/
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3

3 2
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D
⋅= ∫−                           (24-4) 

By Eqs.20, omitting the non-linear items, the following approximations are obtained: 

2
3

3

1
3

3
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2
1)(

2
1 Lf

x
⋅Θ=

∂
−∂ σσ ,                          (25-1) 
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By Eqs.21, it is easy to identify that the above equations can be rewritten as: 
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Then, the Eqs.12 is rewritten as: 
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Omitting the non-linear items and letting 033 =σ , they can be combined as the classical linear 
bending momentum equation [10]: 
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∂                       (28) 

This research shows that the classical linear bending momentum equation is the logic results of two 
sets of motion equations for unit orthogonal deformation (defined by Eq.8). It makes this research 
soundness. 
For plate bending, the non-linear bending momentum equation is: 
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Only taking the effects of the asymmetrical stress components 3
1σ , 1

3σ , 3
2σ , and 2

3σ  into 
consideration, the Eq.29 is approximated as: 
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In non-destructive detect, the Eq.28 is assumed as precondition determined by manufacture or 
working condition. Therefore, the stress redistribution caused by non-linear items can be studied by 
introducing the effective load, which is defined as: 
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By this way, the fatigue-fracture initiation position can be predicted by calculating the effective load. 
Based on previous results (Eqs.13, Eqs.21, and Eqs.31), each items of effective load can be 
obtained. As a first approximation, on the thickness direction, the local whole rotation angle 
variation can be expressed as: 
         323 )()( xx Θ+Θ=Θ                              (32) 
Then, for small Θ  (defined on central plan) and small thickness ( 2/2/ 3 DxD ≤≤− ), the 
following equation can be used to simplify the asymmetrical stress in Eq.31. 
        323 )(sin)(sin xx Θ+Θ≈Θ                            (33) 
Furthermore, omitting the higher order infinitesimals, the following approximations are obtained: 
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As a simple example, for simple bending Θ≈
∂
∂

1

3

x
u , 12 =L , 01 =L , 1

3

x∂
Θ∂

≈κ , 21 )(Θ≈κ , the 

effective load is simplified as: 
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It shows that the local whole rotation in average sense (local curvature) has significant effects. Here, 
the stress concentration is expressed by effective load variation. Hence, it can be used in forward 
problems to predict possible fatigue-fracture initiating positions. 
 
6. Conclusions 
 
For large deformation, such as plate bending, the linear momentum conservation equations and 
angular momentum conservation equations are used to study the stress concentration problems. The 
research shows that, for plate bending, the dominate Cauchy stresses are asymmetrical. The 
symmetrical stress components are higher order smaller. By requiring both sets of motion equations 
are satisfied, the classical bending momentum linear motion equation is obtained as a linear 
approximation.  
Based on the linear momentum conservation equations, the stress concentration caused by bending 
curvature functions is studied by introducing effective stress transportation solutions. The results 
show that: the effective stresses on central plan parallel surface are exponentially varied with 
path-integral of curvature along scale directions. The effective stresses on thickness direction are 
exponentially varied with the path-integral of curvature functions. The scale effects are very 
significant. As the effective stresses can be detected by many non-destructive methods, the 
curvature functions can be estimated. For supersonic wave method, the effective elasticity can be 
detected and used to estimate the curvature functions. Hence, the fatigue-fracture initiating position 
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can be predicted. 
Based on the angular momentum conservation equations, the stress concentration caused by local 
load on thickness direction is studied. The results show that: the local body force (load) will cause 
local asymmetrical stress concentration along thickness direction with exponential law about 
thickness. 
Finally, the effective load caused by local bending curvature is introduced to estimate the stress 
concentration as effective load variation. For simple bending, an explicit formula is given. It shows 
that the local rotation in average sense (local curvature) has significant effects. This equation can be 
easily used for non-destructive inverse problems. 
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