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Abstract   
 
Advanced ceramics comprise a class of new materials finding increased application used in extreme 
conditions, such as high speed turning of aerospace alloys and rock drilling. Their high hardness makes them 
suitable for these applications, however their lower toughness means that premature failure due to fracture 
and chipping is still a major issue. Typically, they are composed of micron-sized particles of a primary hard 
phase together with a ceramic or metallic matrix. 
 
A combined experimental-numerical method was used to investigate the role of microstructure on the 
fracture of these advanced ceramics. In particular, the effect of grain size and matrix content was examined. 
Representative finite volume (FV) microstructures were created using Voronoi tessellation. The cohesive 
zone parameters for the FV model were found experimentally using an adapted Three-Point-Bend (TPB) 
fracture toughness test method [1]. Image analysis was carried out on actual representative microstructures 
and compared to the FV microstructures to ensure that they were statistically similar. 
 
It was found that the underlying microstructure significantly affects the fracture toughness of the advanced 
ceramic. Furthermore, it was found that by altering the microstructural parameters in the numerical model, 
such as grain size and binder content, it is possible to specify material improvements. 
 
Keywords Advanced ceramics, microstructure, Voronoi tessellation, cohesive zone model 
 
1. Introduction 
 
In this study, we examine a two-phase ceramic structure composed of stiff hard particles together 
with a softer ceramic matrix material. Carolan et al [1, 2] have shown that the strength and 
toughness of polycrystalline materials are affected by both the grain size and matrix content. 
Therefore it is desirable to be able to virtually optimise these parameters to be able to produce 
stronger or tougher materials for specific applications. Current methods adopt a so-called 
“trial-and-error” approach to the design of new materials, which is both costly and time consuming. 
Hence, it is beneficial to be able to specify improvements to materials numerically. By specifying 
materials virtually, the influence of individual material parameters on the microstructural scale can 
easily be investigated and altered to change bulk material properties. In order to better model and 
predict material behaviour, the first step is the ability to produce statistically representative 
microstructures. 
 
A number of authors [7–10] have generated finite element meshes directly based on actual 
microstructural images. In this work, however, a representative synthetically generated geometry is 
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produced, which is then compared to a real microstructure. Numerous studies have been carried out 
to produce numerical microstructures using Voronoi tessellation [11–13], with an emphasis on 
investigating stress distributions in plasticity [14–17] and fracture [18–20]. However there is little 
in the literature to show that numerical microstructures are actually representative of the real 
microstructures they were created to replace. This is important, especially in the case of fracture 
problems, where the morphology of a grain boundary interface is of added importance in initiating 
fracture. The present work attempts to produce numerical microstructures and subsequently 
compare them to these real microstructures to prove that they are statistically representative.  
 
2. Synthetic microstructure generation 
 
Voronoi tessellation was used to generate the geometrical model of the microstructure. It is a 
commonly used method for the generation of numerical microstructures of ceramic [19, 20] and 
metallic [11, 16, 21, 22] materials in both two- and three-dimensions. The Voronoi tessellation 
algorithm produces a random structure, which is representative of a polycrystalline material. A 
periodic microstructure was generated with periodic boundary conditions. To generate a dual 
interpenetrating phase microstructure, typical of some advanced ceramics, the Voronoi tessellation 
is applied. Each Voronoi tile is then reduced in area around the circumcentre of the tile until the 
desired area fraction of the second interpenetrating phase is reached, as shown in Figure 1. 
 

 
Figure 1: Numerically generated microstructure with 50% primary phase. 

 
3. Results 
 
3.1 Comparison of real and numerical microstructures 
 
Grain size distribution, aspect ratio, percentage matrix agglomerations (MA) and percentage 
primary phase were obtained through image analysis. Matrix agglomerations are large regions 
containing no primary phase. From the image analysis it was found that the two real microstructures 
being investigated had an average areal primary phase content of 50.5% and 47.2% respectively. 
Four synthetic microstructures were generated for comparison, as shown in Figure 2. The generated 
microstructures all had a particle content in the range of 49-54%, which was close to the real 
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microstructures investigated. The percentage matrix agglomerations with respect to matrix phase 
content was calculated for the two real microstructures and was found to have an average value of 
57.5% and 45.9% respectively. The two synthetic microstructures with matrix agglomerations, 
Figures 2b and 2d, had matrix agglomerations of 52.6% and 52.3% respectively. 
 

       
(a) 5×5 grains        (b) 5×5 grains with MA     (c) 10×10 grains      (d) 10×10 grains with MA  

Figure 2: Numerical microstructures used for finite volume 

Grain size distribution, percentage particle phase and aspect ratio were obtained for both the 
numerical and corresponding real microstructures. A comparison between the two confirms that the 
numerical model is a good representation of the real microstructure, see Figures 3a and 3d. The 
grain size distribution of both the real and the numerical microstructure follow a log-normal 
distribution with a greater number of small grains, see Figure 3b and 3e. The real microstructure has 
a higher percentage of these small grains than its numerical counterpart due to small fragmented 
grains. However, it is not thought that these small fragments affect the mechanical properties of the 
bulk material. The aspect ratio of the real and the numerical microstructures show excellent 
agreement, as shown in Figure 3c and 3f. Visually it was also observed that the numerical 
microstructure resembled the real microstructure. 

 
      (a) Real microstructure     (b) Grain size distribution        (c) Aspect ratio  

 
      (d) Numerical microstructure    (e) Grain size distribution        (f) Aspect ratio  
Figure 3: Comparison of real (a,b,c) and numerical (d,e,f) microstructures in terms of grain size distribution and aspect 

ratio. 
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3.2 Finite volume stress analysis 
 
Finite volume based stress analysis was carried out on the four generated microstructures using 
OpenFOAM 1.6-ext [23]. Each generated microstructure was 100×100μm in size with 
approximately 50% particulates, but with varying grain sizes and matrix agglomerations, as shown 
in Figure 2. The simulations were 2-dimensional and plane strain was specified in the third 
direction. The Young’s modulus and Poisson’s ratio for the grains are 800 GPa and 0.1 respectively, 
while for the matrix material E = 300 GPa and ν = 0.1 were chosen for illustration. Both the 
particulates and matrix were treated as linear elastic over the course of the simulation. It should be 
noted that the elastic constants picked for each phase are not representative of any particular 
material. 
 
The microstructures were subjected to a normal traction rate of 10 MPa/s in the y-direction for a 
total loading time of 10 seconds, while cyclic boundary conditions were applied in the x-direction, 
see Figure 4. The cyclic boundary conditions ensure that both material and displacement 
distribution are continuous from right to left. Furthermore, the 10×10 grain microstructures were 
increased to 200×200μm to investigate size effects. 

 
Figure 4: Generated microstructure with periodic boundary conditions subjected to a fixed traction 

 
3.3 Effective elastic properties 
 
The Young’s Modulus value of a multiphase material depends on the properties of the individual 
phases. The upper and lower bounds for the elastic properties of the microstructures can be found 
using the Hashin-Shtrikman method from Eq. (1) and (2). The Hashin-Shtrikman bounds can be 
applied to transversely isotropic composites with arbitrary phase geometry [24–26]. 
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Where l and u represent the upper and lower bounds respectively, k is the bulk modulus, µ is the 
shear modulus, m is the volume fraction and 1 and 2 represent the two phases in the material. 

𝐸 = !!!!!
!!!!!!

              (3) 

  𝜈 = !!!!!!!
!!!!!"!

          (4) 

The upper and lower bounds for the Young’s modulus and Poisson’s ratio can then be calculated 
from Eq. (3) and (4) respectively [21], by letting i equal u and l from Eq. (1) and (2). Using the 
Hashin-Shtrikman method the Young’s modulus bounds for 50% particulates was found to be 
459.9-480.6 GPa (Table 1). 
 
The Eshelby-Mori-Tanaka approach [27–29] for determining the elastic properties of composites 
containing randomly oriented inclusions was also employed in the current work. Using this 
approach, and treating the inclusions as circular, i.e. an aspect ratio of one, the ratio of bulk 
modulus, k, and shear modulus, µ of a composite material to that of the matrix can be written as: 

!
!!

= !
!!!!!

             (5) 

!
!!
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!!!!!

           (6) 

where km, µm and Vf are the bulk modulus of the matrix, shear modulus of the matrix and volume 
fraction of the inclusion respectively, and p and q are parameters derived from the Eshelby tensor 
and defined in Tandon and Weng [27]. Using the Eshelby-Mori-Tanaka method, the Poisson’s ratio 
was found to be 0.114 for all the microstructures. 
 
The effective stress, σe, and strain, εe, were found by averaging the local stress and strain in each 
cell using Eq. (7) and (8) [30]. This is known as homogenisation. 

σ e =
1
VΩ

σ dV
VΩ

∫           (7) 

ε e =
1
VΩ

ε dV
VΩ

∫            (8) 

Where VΩ is the total volume of integration. These values were then used to calculate the effective 

Young’s Modulus Ee from 

Ee =
1
εyy
e [σ yy

e −ν e(σ xx
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where the effective Poisson’s ratio, νe, is 

ν e =
σ xx

e

σ yy
e +σ zz

e            (10) 



13th International Conference on Fracture 
June 16–21, 2013, Beijing, China 

-6- 
 

The effective Young’s modulus, EEq.9 of the microstructures is as shown in Table 1. The Poisson’s 
ratio was found to be 0.112 for all the microstructures. The Young’s modulus was also determined 
by calculating the average tractions and strains on the loading boundaries. Using these values the 
stress, σ, and strain, ε, and hence the Young’s Modulus, E, could be calculated by: 

𝜎! = !!
!!!

          (11) 

𝜀! = !!
!!

          (12) 

𝐸! = !!

!!
            (13) 

Where F1 is the loading force on the prescribed boundary, L1 and L2 are the width and height of the 
specimen, t is the thickness of the specimen and u1 is the displacement of the sample along the 
loading direction. The Young’s modulus value calculated using Eq. (13), was found to be higher 
than the value calculated using the average volumes (Table 1). 
 
Table 1: Elastic properties of numerical microstructures where EEq.9 is calculated using the homogenisation method in 

Eq. (9), EEq.13 is calculated using the load-displacement method in Eq. (13), EEMT is calculated using the 

Eshelby-Mori-Tanaka method, and EHS is calculated using the Hashin-Shtrikman method 

Microstructure Vf EEq.9 (GPa) EEq.13 (GPa) EEMT (GPa) EHS (GPa) 
5×5 0.5 463.2 475.9 462.1 459.6 - 480.6 

10×10 0.5 463.3 476.3 462.1 459.6 - 480.6 
5×5 with MA 0.49 459.7 472.4 457.7 455.3 - 476.1 

10×10 with MA 0.54 485.1 498.6 484.7 477.4 - 499.8 
10×10 (200×200µm) 0.5 463.3 476.3 462.1 459.6 - 480.6 

10×10 with MA (200×200µm) 0.54 485.1 498.6 484.7 477.4 - 499.8 
 
The Young’s modulus value for the two microstructures with no matrix agglomerations was found 
to be very similar using all the methods for calculating the Young’s modulus. This suggests that the 
Young’s modulus is not affected by the grain size. It was also observed that increasing the specimen 
size to 200×200µm did not change the Young’s modulus value showing that it is not size 
dependent. Furthermore, the matrix agglomerations were not found to affect the Young’s modulus 
values. Only the volume fraction of particles was found to make a difference. 
 
It was found that the load-displacement method consistently gave higher results than both the 
Eshelby-Mori-Tanaka and the homogenisation methods. The load-displacement values were found 
to lie close to the upper bounds of the Hashin-Shtrikman limits. The homogenising was found to 
give realistic values for Young’s modulus and Poisson’s ratio, and these values were found to be in 
good agreement with the Eshelby-Mori-Tanaka method. Both these values tend to lie close to the 
lower bound of the Hashin-Shtrikman limits. 
 
Figures 5a and 5b plot the distribution of Von-Mises equivalent strain for a 5×5 and 10×10 
microstructure with no matrix agglomerations. Figures 5c and 5d plot the distribution of Von-Mises 
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equivalent stress for the same two microstructures. Similarly Figures 6a and 6b plot the Von-Mises 
equivalent strain for a 5×5 and 10×10 microstructure with matrix agglomerations and Figures 6c 
and 6d plot the corresponding Von-Mises stresses. From Figure 5 it may be observed that the 
distribution of local stress and strain does not vary significantly between the two microstructures, 
showing that stress and strain are not size dependent. However, when comparing Figure 5 and 6, it 
can be observed that the matrix agglomerations do affect the local distribution of stress and strain in 
the microstructure, with higher stress and strain being detected near the agglomerations. The highest 
stresses are seen in the hard phase at the phase interface, while the highest strains are seen in the 
more compliant matrix phase. This shows that matrix agglomerations in the microstructure act as 
stress concentration factors. Carolan has previously observed this effect in the context of dynamic 
fracture of advanced ceramics [31]. 
 

 
(a) 5x5 grains strain     (b) 10x10 grains strain 

 
(c) 5×5 grains stress     (d) 10×10 grains stress 

Figure 5: Strain and stress distribution in the numerical microstructures with no matrix agglomerations subjected to a 

normal traction of 100 MPa. The deformation of the microstructure is magnified by a factor of 1000. 
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(a) 5×5 grains strain     (b) 10×10 grains strain 

 
      (c) 5×5 grains stress     (d) 10×10 grains stress 

Figure 6: Strain and stress distribution in the numerical microstructures with matrix agglomerations subjected to a 

normal traction of 100 MPa. The deformation of the microstructure is magnified by a factor of 1000. 

4. Conclusion  
 
The purpose of this paper was to develop statistically representative numerical models of advanced 
ceramic microstructures. The microstructures were generated using the Voronoi tessellation 
algorithm and subsequently altered to add a specified percentage primary inclusion phase and 
secondary phase matrix agglomerations to the microstructure. In the current paper it has been 
shown that the Voronoi Tessellation technique is a good method for the production of synthetic 
microstructures. The synthetic microstructures were compared to true microstructures and were 
found to be statistically representative in terms of grain size distribution, aspect ratio and 
agglomeration of a second phase material. 
 
Using the numerically generated microstructures, Finite Volume analysis was carried out to 
investigate the stress and strain distributions in the microstructures and hence calculate the effective 
Young’s modulus and Poisson’s ratio. It was observed that the higher strains occur in the more 
compliant second phase material. This was more prevalent when there were agglomerations of the 
second phase material. Furthermore, it was observed that the presence of matrix agglomerations act 
as a stress concentration factor. Hence, the interface between particulates and a matrix 
agglomeration is likely to be the source of failure. This emphasises the need for accurate 
representation of microstructures in a numerical model. 
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The current paper presents a useful and implementable tool for investigating the effect of 
microstructural parameters on the microscopic stress distribution in a polycrystalline material. It is 
intended that the work will be extended to include other types of advanced ceramic material 
including single-phase ceramic as well as complex structures containing many different phases. 
Future work will concentrate on comparing the bulk elastic predictions with experimentally 
determined values for a range of advanced ceramics. It is also intended to extend the predictive 
capabilities of the models to capture strength and fracture behaviour.  
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