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Abstract A mixed-mode crack in a magnetoelectroelastic layer under in-plane mechanical, electric
and magnetic loadings is considered for electrically and magnetically impermeable crack surface
conditions. Fourier transforms are applied to reduce the mixed-boundary-value problem of the crack
to a system of singular integral equations. The asymptotic fields near the crack tip are obtained in an
explicit form and the corresponding field intensity factors are obtained. The exact solution for a
crack in an infinite magnetoelectroelastic material can be recovered if the width of the layer tends to
infinity. The crack kinking phenomenon is investigated by applying the criterion of maximum hoop
stress intensity factors. The results show that the size of the layer and the electric and magnetic
loadings have significant effects on the singular field distributions around the crack tip, and the
hoop stress intensity factors are influenced by the material parameters, the electric loadings and the
geometric size ratios.

Keywords Mixed-mode crack, Magnetoelectroelastic layer, Singular integral equations, Crack kinking,
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1. Introduction

In the recent decade, effect, magentoelectroelastic materials can be used in intelligent structures
as sensors, actuators and transducers Owing to the unique magneto-electro-mechanical coupling
effect. In the recent decade, there is a growing interest among researchers in solving fracture
mechanics problems in magnetoelectroelastic media.

Crack initiation behavior in magnetoelectroelastic composite under in-plane deformation was
investigated by Song and Sih [1]. Gao et al. [2] developed an exact treatment on the crack problems
in a magnetoelectroelastic solid subjected to far-field loadings. Qin [3] obtained 2D Green’s
functions of defective magnetoelectroelastic solids under thermal loading, which can be used to
establish boundary formulation and to analyze relevant fracture problems. The moving crack
problem in an infinite size magnetoelectroelastic body under anti-plane shear and in-plane
electro-magnetic loadings has recently been solved by Hu and Li [4] whose results predicted that
the moving crack may curve when the velocity of the crack is greater than a certain value. The
dynamic response of a penny-shaped crack in a magnetoelectroelastic layer was studied by Feng et
al. [5]. Boundary element method was developed by Rojas-Diaz et al. [6] to study crack problem in
linear magnetoelectroelastic materials under static loading conditions. Wang and Mai [7] discussed
the different electromagnetic boundary conditions on the crack-faces in magnetoelectroelastic
materials, which possess coupled piezoelectric, piezomagnetic and magnetoelectric effects. Zhong
and Li [8] gave a magnetoelectroelastic analysis for an opening crack in a piezoelectromagnetic
solid. Zhou and Chen [9] analyzed a partially conducting mode | crack in piezoelectromagnetic
materials. Zhao and Fan [10] proposed a strip electric-magnetic breakdown model in
magnetoelectroelastic medium to study the nonlinear character of electric field and magnetic field
on fracture of magnetoelectroelastic materials. The problem of a planar magnetoelectroelastic
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layered half-plane subjected to generalized line forces and edge dislocations is analyzed by Ma and
Lee [11]. Li and Lee [12] established real fundamental solutions for in-plane magnetoelectroelastic
governing equations and studied collinear unequal cracks in magnetoelectroelastic materials. An
embedded mixed-mode crack in a functionally graded magnetoelectroelastic infinite medium has
been studied by Rekik et al. [13]. Recently, the pre-curving analysis of a crack in a
magnetoelctroelastic strip under in-plane dynamic loading has been conducted by Hu and Chen [14]
and the same authors [15] also studied the anti-plane problem of a magnetoelectroelastic strip
sandwiched between elastic layers. The mode Il crack crossing the magnetoelectroelastic
bimaterial interface under concentrated magnetoelectromechanical loads was investigated by Wan
etal. [16].

To the best knowledge of the authors, the mixed-mode crack in a magnetoelectroelastic layer
with finite width under in-plane magneto-electro-elastic loadings has not been reported in the
literature. This problem is solved in this paper. Fourier transforms are applied to reduce the
mixed-boundary-value problem to a system of singular integral equations which can be solved
numerically. The asymptotic fields near the crack tip are obtained in an explicit form and the
corresponding field intensity factors are determined. The crack kinking phenomena is investigated
by applying the criterion of maximum hoop stress intensity factors. The coupling
magneto-electro-elastic effects on the crack-tip fields are investigated and the finite size effects on
the dynamic fracture properties are discussed.

2. Problem statement and method of solution

Consider a transversely isotropic, linear magnetoelectroelastic material and denote the
rectangular coordinates of a point by (X, y, z) . The constitutive equations can be written as

C C 0 ou., /OX 0 e 0
Oy 11 13 x/ 31 8¢/8X hl3 6§0/8X
c,r=/Cs Ci; O au, /82 +| 0 23 o6 /82 +1 0 hy 5 /82
o.] |0 0 cyllou/ozrou,jox] e, 0 he 0|7
_ ou, /ox _
{DX} _{ 0 0 e auxéaz A, O Hw/ax} {dn 0 Hago/ax} M
D | le, e, O : |o oglaz| | 0 d|low/o
z 31 Ca3 i aux/82+8uz/8x L Ass ¢/ z 33 (0/ z
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{BX} _{ 0 0 hg ou, Jaz d, 0 H&W&X} {ﬂn 0 Hago/ax}
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where u,,u, are components of the displacement vector, ¢ and ¢ are the electric and magnetic
potentials, respectively; C,,,C,,,C,,,C,, are elastic constants, e,e; are piezoelectric constants,

h.,h,, are piezomagnetic constants, A,,4,, are dielectric permittivities, and d,,d,; are
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electromagnetic constants; oy, D, and B, (i,j=x,z) are components of stress, electric

displacement and magnetic induction, respectively.
We study an electrically and magnetically impermeable crack of length 2c in a

magnetoelectroelastic layer of width h, +h,, with the poling direction perpendicular to the crack
plane, as shown in Fig. 1. Uniform normal stress P,and in-plane electric field E, and magnetic
field H, are applied on the cracked layer. Symmetry conditions can be applied and then it is

necessary to consider only the region (x>0, —h, <z <h)).
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Figure 1. A cracked magnetoelectroelastic layer under in-plane magnetoelectromechanical loadings

Under the assumption of plane strain, the governing equations take the form
Cllux,xx + C44ux,zz + (C13 + C44)uz,xz + (e3l + els)¢,xz + (h3l + h15)¢,xz = O
(ClS + C44)ux,xz + C44uz,xx + C33uz,zz + e15¢,xx + e33¢,zz + h15¢,xx + h33¢,zz = 0

)
(e3l + e15)ux,xz + e15uz,><>< + e33uz,zz - 1’11¢,xx - 133¢,zz - dllw,xx - d33¢,zz =0
(h31 + hls)ux,xz + h15uz,xx + h33uz,zz - d11¢,xx - d33¢,zz - :u11¢,xx - :u33¢,zz =0
The boundary conditions on the layer surfaces and the impermeable crack faces are:
Jzz (X’hl) = O-zz (Xv—hz) = F)O (0S X<OO) (3)
o (X, ) =0, (x=h,) =0 (0<x<w) (4)
E,(x,h)=E,(x—h,) =E, (0<x<o) (5)
H,(x,h) =H,(x~h,) =H, (0<x<w) (6)
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c,(x,0)=0, o,(x,0)=0 (0<x<¢c) (7)
D,(x,00=0, B,(x,00=0 (0<x<¢c) (8)
The continuity conditions for the physical quantities across the crack plane are:
0, (x,0")=0,(x07), 0,(x07)=0,(x,0), (x>c) 9)
D, (x,07)=D,(x,07), B,(x,0")=B,(x,07), (x>c) (10)
u,(x,07) =u,(x,07), u,(x,07) =u,(x,07), (x>c) (11)
#(x,07) =¢(x,07), p(x,0") =¢(x,07), (x=c) (12)

Fourier transforms are then applied on Eqg. (2) and the solutions may be expressed as

ui2”>(x,z)=iszi,- [ [A" (£)cosh(y &) + B (£) sinh(y, &) Jeos(&)dé + Tz (1=1-3) (13)

0" (x,2) = —ia,—y,— [ [ (©)sinh(y,&2) + BI" (£) cosh(r,&2) Jsin(&)d& (14)

where u, =u,, U,, =¢, U, =@, Q=1 Q, =b, Q;;=d;, T, (j=123) are constants and

a, b, d (j=1-4) are known functions defined in Appendix A,

/R L

AV (&), BM(&), (n=12; j=1234) are unknowns to be determined and the superscripts

(), (2) denote the fields quantities in the upper 0<y<h, and lower parts —h, <y <0 of the

cracked magnetoelectroelastic layer (as shown in Fig. 1), respectively.

Theroots y; (j=1-4) are determined from solving the following characteristic equation:

Cy-— C4472 (Cs+Cl)y (ex+ey)y (hy +hg)y

(Cs +Cl)y (:337/2 -Cu e337/2 — €5 h3372 —hys

(3 +€5)y e337’2 —e5 Ay 1’3372 dy, - dss?’2

(hy +hy5)y h3372 —-hs d, - d3372 M — /13372

It is noted that the eighth-order characteristic equation (15) has eight roots which occur in pairs
with the same magnitude but opposite signs, and for complex roots, the roots always appear in

=0 (15)

conjugate pairs. In the expressions (13, 14), the roots y; (j=1-4)arechosenas Re(y;)>0 by

requiring a positive internal energy for the system to be in a steady state.
The expressions for the stresses, electric displacement and magnetic induction can be obtained
as follows:

o ==V, [ A (@) cosh(y, @) + BO ()sinh(y @)sin(30de (1-1-3)  (16)
j=L
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ol = a0 =3 U, [ AP (@) sinn(y,2) + B () cosh(y eos(&0de  (1=1-4) (17)

where
O-lx = O-zx’ GZX = Dx’ O-Sx = Bx' Vlj = fj’ V2j = Sj’ V3j :tj
O-lz:O-zz' O-Zz:DN O-3z:Bz’ O-4z:O-xx; Ulj :gj1 U2j:mj’ U3j:nj1 U4j:qj (18)

019 = Fyy Oy =851, — Ay T, — d33T33’ O = hggTy =gy T, — i3T5, 04 = CppTy + 65T, + 0y T,
and the coefficients are defined as:

f,=Cua7f +D—eyb; —hgd;, g, =(Cpa; +ezb; +hyd; —cy)y,
q; =(Cpa; +eyb; +hyd; —c5)y;, My =(658; — Agb; —dgd; —€5)7;

(19)
N, =(hya; —dyb; — s, —hy)y;, s, =eg(a;7f +1) + Aub; +d;,d,

t, = hls(aj;/j2 +1)+dyb; + 4,d,

From the boundary conditions (3-10), the unknown functions B{(£), A (&), B?(&)

(j =1-4) can be expressed by the four independent unknowns A (&) (j=1-4) as

BO(¢) = Z R (S, h)A™ () (20)
AP (&) = 3T, (Eh ) AV (E) 1)
BJ{Z) (&) = Z RJ(iZ) (&, hZ)Ai(Z) (&) = ZjS (&h,, hz)Ai(l) (&) (22)

where R{P(£,h), T;(¢,h,h,) and RP(&,h,) are known functions.

Introduce the auxiliary functions ®;(x) (i=1-4) such that

®,(x) ul (x,0M) —u?(x,07)
()| _ 2 Ju(x07)-u(x,0") (23)
D, (x)[ x| 4@ (x,0") - g®(x,07)

@, (x) 9 (x,07) -9 (x,07)

By applying the solutions (13, 14) and using the Fourier inverse transform, the unknowns can be
obtained as

AV () D) Yl Yold) V(o] b PuOoosess
AYE| 2| Yald) Yul® Yu@) Yau(@) || @()sin(so)ds
A (&) o Y31(8) Y3 (8) Yi(8) Yau(S) _LCCDS(S)Sin(Sf)dS
Ail)(‘f) Y41(§) Y42(§) Y43(§) Y44(§) IC®4(S)Sin(S§)dS

(24)
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where Y;(¢) (i, j=1-4) are known functions. Satisfaction of the mixed boundary conditions (7,
8) on the crack face plane leads to the simultaneous singular integral equations

I{uﬁxﬂ%$+2[

1| U 4
L{{X_ﬂ }‘Pl(s, p)+Z;z<4j(s,x)\Pj (s)}ds =0
j=
where ¥;(s) =®;(cs), and x;(s,x) (i=1-4) are known kernel functions, the constants Uf’
are defined as U] :![TOU (&), and U;(&) are known functions. The functions W(s) (i =1-4)

J(s, x)}‘l’ (s)}ds =—n0,, (i=1-3)
(25)

satisfy the single-valuedness condition:
[[#(s)ds=0, (i=1-4) (26)

The solution of W,(s) may be expressed as
¥,(s) = H,(5)/¥1-57 (27)

where H,(s) (i=1-4) are new unknowns to be solved.

The singular integral equations can be solved numerically as [17], [18]:

Zn:Ai{ Ky (Xcr 8] 1(Si)+iL_Umjx +ij(xk,si)}Hj(si)}z—wmo, (m=1-23)

i j=2 A

(28)
Z'A\ﬂ: 41 +K41(Xk’sl):| 1(3 )+Z[K4j(xk7sl)]H (S )}
where,
~ [i-Yx o , [(Zk -~ } B
s, =cos| ——— |, (i=12,.,n); X, =COS|~—— (k=12,..,n-1)
b . . 4 . B
A = 20-1)' (i=1n); A= -1’ (i=23,..,n-1

For h, h, >, x;(s,x)=0 and from (25) the exact solution can be obtained as

¥ (s) =0, ¥.(s) =c,s/v1-s (i=2-4) (30)

where ¢, (i=2-4) are constants relatedto U;.
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3. Asymptotic fields near the crack tip

Once the functions H;(s) (j=1-4) are obtained from solving the algebraic equations (28),

following the procedure in Li and Lee [19], the asymptotic solutions of the magnetoelectroelastic
fields near the crack tip can be obtained by introducing a polar coordinate system (r,&) with the

origin at the right crack tip as
(x—c)?+z?, @=tan?[z/(x-0)] (31)
The hoop and shear stresses at an angle & near the right tip of the crack are obtained from the
following relations in terms of the polar coordinates (r,8)
G, (r,0)=c,(r,0)cos’0+c,(r,0)sin> -, (r,0)sin 20
0,,(r,0)=sin20[c,,(r,0)- o, (r,0)]/2+0c,(r,0)cos 20

Define the hoop stress intensity factor and shear stress intensity factor associated with the hoop
and shear stresses at an arbitrary as angle @ as [20]:

Ko =lim(2ro,, ) K, =lim(2ro,,) (33)
The hoop and shear stress intensity factors can be obtained as:
H, @Y 3[(-1)"A;;(0)(g; cos® 6+, sin? 8)— A, (6) f, sin 26]

(32)

ré

m_ o) .
o CJZl: +3 H YL [(-1)" A, (0) f, sin 26+ A,;(6)(g cos? 6 +q, sin® O)] (34)
, |H LY S[(-D"A,;(0)sin26(q; - g;)/2+ A, () T, cos 26]
(M _
W= +ZH WYE[A,,(@)sin26(g, -, )/2— (1) Ay, (O) 1, cos26] (39)

where 0<0 <7z when n=1 for the upper partand —z <6<0 when n=2 for the lower part

of the cracked layer, respectively; Y0 —I|mY ; (&), and the angular functions A,;(0) and A,;(6)
(j=1-4) are defined as

A(9) = \/0032(9)+[}/j sin(0)[" + (~1)" cos(6)
e 2lcos?(6) + [y, sin(@)[ |

By setting the angle & equal to zero, the common expressions for the Mode-I and Mode-II
stress intensity factors can be recovered

4 4
K99|9:o :\/Ez gszj(l)(Hk(l)l KII = r9|9 -0 \/_H (1)2 f] i1 (37)
=1 k=2

In this paper the criterion of maximum hoop stress intensity factors |s applled to predict the
crack kinking phenomena. It is noted that the applied electric and magnetic loadings and material
properties have influence on the singular field near the crack tip, as shown in Egs. (18), (25), (34),
and (35).

(n=12) (36)

4. Numerical results and discussions
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For the magneto-electrically impermeable crack problem, the crack-tip fields are dependent on
the remote mechanical, electrical and magnetic loading. To study the effect of
magneto-electro-elastic interaction, the electric and magnetic loading parameters are introduced as:

LE :easEo/Po’ LH = h33H0/P0 (38)

The material constants used in the numerical calculation are selected as BaTiOs;-CoFe,O4
composite [21]:

C,, =22.6x10"(N/m?), C, =12.4x10"°(N/m?), C,, =21.6x10"(N/m?)

C,, =4.4x10"°(N/m?), e, =5.8 (C/m?), e, =—2.2 (C/m?),

e, =9.3 (C/m?), h, =275 (N/Am), h,, =290.2 (N/Am)

h,, =350 (N/Am), 4, =56.4x10"°(C?/Nm?), i, =635x10%°(C?/Nm?) 9
;= 29.7x10°(Ns?/C?), s, = 6.35x10°(Ns?/C?)

d,, =5.367x107*(Ns/VC), d,, =2737.5x107**(Ns/VC)

Normalized SIFs

N ’,4’ ’/ _ - —
o5l \.\_{ ,,,,,,,,, , Kee (h/e=h,lc=2) ||
------- K, (h/e=h,/c=2)
al — Ky (h,/c=3h,/c=3) | |
----- K, (h,/c=3h,/c=3)
_15 L L L L
-180 -120 -60 60 120 180

0
0 (degrees)

Figure 2. Normalized SIFs versus angle 8 when L. =+0.5, L, =-0.3.

The variation of the normalized hoop and shear stress intensity factors (normalized by PO\/E )

with angular position ¢ are displayed in Fig. 2. Without loss of generality, the applied stress is

taken as P, =4.2 MPa, and the magnitudes of the electric and magnetic loading parameters are

chosen as L. =+0.5, L, =-0.3. The maximum hoop stress intensity factor (HSIF) occurs at

& =0 when the crack locates on the central plane of the layer, which indicates that the crack has a
tendency to propagate along its original plane when the criterion of the maximum hoop stress
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intensity factor is applied. When h, = h, the maximum HSIF occurs at & =0 , which indicates

that the crack has a tendency to deviate from its original plane. When the HSIFs reach the
maximum, the magnitude of the SSIF is zero.

5. Concluding remarks

A mixed-mode crack in a magnetoelectroelastic layer under in-plane mechanical, electric and
magnetic loadings is studied for impermeable crack surface conditions. Fourier transforms are
applied to reduce the mixed-boundary-value problem of the crack to a system of singular integral
equations. Asymptotic fields near the crack tip are obtained explicitly and the corresponding field
intensity factors are defined. The analytic solution of the degenerated case for a cracked infinite
magnetoelectroelastic solid is recovered when the width of the layer tends to infinity. The crack
kinking phenomena is investigated by applying the criterion of maximum hoop stress intensity
factors.

Appendix A
le(Po+essEo+h33Ho)/C33’ T2:—E0, T3:_Ho (A1)
1
a, Cy- C447j2 €31+ 65 hy, +hyg C3+C,
bj =1 (Cpz + C44)7j2 (3337/12 —€5 h337/jz —hy; C33712 -C,, (A2)
dj (&5 + e15)712 Ay — /133712 dy, - d337j2 833]/1-2 —€5
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