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Abstract  A mixed-mode crack in a magnetoelectroelastic layer under in-plane mechanical, electric 
and magnetic loadings is considered for electrically and magnetically impermeable crack surface 
conditions. Fourier transforms are applied to reduce the mixed-boundary-value problem of the crack 
to a system of singular integral equations. The asymptotic fields near the crack tip are obtained in an 
explicit form and the corresponding field intensity factors are obtained. The exact solution for a 
crack in an infinite magnetoelectroelastic material can be recovered if the width of the layer tends to 
infinity. The crack kinking phenomenon is investigated by applying the criterion of maximum hoop 
stress intensity factors. The results show that the size of the layer and the electric and magnetic 
loadings have significant effects on the singular field distributions around the crack tip, and the 
hoop stress intensity factors are influenced by the material parameters, the electric loadings and the 
geometric size ratios. 
 
Keywords  Mixed-mode crack, Magnetoelectroelastic layer, Singular integral equations, Crack kinking,  
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1. Introduction 
 
   In the recent decade, effect, magentoelectroelastic materials can be used in intelligent structures 
as sensors, actuators and transducers Owing to the unique magneto-electro-mechanical coupling 
effect. In the recent decade, there is a growing interest among researchers in solving fracture 
mechanics problems in magnetoelectroelastic media.  

   Crack initiation behavior in magnetoelectroelastic composite under in-plane deformation was 
investigated by Song and Sih [1]. Gao et al. [2] developed an exact treatment on the crack problems 
in a magnetoelectroelastic solid subjected to far-field loadings. Qin [3] obtained 2D Green’s 
functions of defective magnetoelectroelastic solids under thermal loading, which can be used to 
establish boundary formulation and to analyze relevant fracture problems. The moving crack 
problem in an infinite size magnetoelectroelastic body under anti-plane shear and in-plane 
electro-magnetic loadings has recently been solved by Hu and Li [4] whose results predicted that 
the moving crack may curve when the velocity of the crack is greater than a certain value. The 
dynamic response of a penny-shaped crack in a magnetoelectroelastic layer was studied by Feng et 
al. [5]. Boundary element method was developed by Rojas-Díaz et al. [6] to study crack problem in 
linear magnetoelectroelastic materials under static loading conditions. Wang and Mai [7] discussed 
the different electromagnetic boundary conditions on the crack-faces in magnetoelectroelastic 
materials, which possess coupled piezoelectric, piezomagnetic and magnetoelectric effects. Zhong 
and Li [8] gave a magnetoelectroelastic analysis for an opening crack in a piezoelectromagnetic 
solid. Zhou and Chen [9] analyzed a partially conducting mode I crack in piezoelectromagnetic 
materials. Zhao and Fan [10] proposed a strip electric-magnetic breakdown model in 
magnetoelectroelastic medium to study the nonlinear character of electric field and magnetic field 
on fracture of magnetoelectroelastic materials. The problem of a planar magnetoelectroelastic 
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layered half-plane subjected to generalized line forces and edge dislocations is analyzed by Ma and 
Lee [11]. Li and Lee [12] established real fundamental solutions for in-plane magnetoelectroelastic 
governing equations and studied collinear unequal cracks in magnetoelectroelastic materials. An 
embedded mixed-mode crack in a functionally graded magnetoelectroelastic infinite medium has 
been studied by Rekik et al. [13]. Recently, the pre-curving analysis of a crack in a 
magnetoelctroelastic strip under in-plane dynamic loading has been conducted by Hu and Chen [14] 
and the same authors [15] also studied the anti-plane problem of a magnetoelectroelastic strip 
sandwiched between elastic layers. The mode III crack crossing the magnetoelectroelastic 
bimaterial interface under concentrated magnetoelectromechanical loads was investigated by Wan 
et al. [16]. 

   To the best knowledge of the authors, the mixed-mode crack in a magnetoelectroelastic layer 
with finite width under in-plane magneto-electro-elastic loadings has not been reported in the 
literature. This problem is solved in this paper. Fourier transforms are applied to reduce the 
mixed-boundary-value problem to a system of singular integral equations which can be solved 
numerically. The asymptotic fields near the crack tip are obtained in an explicit form and the 
corresponding field intensity factors are determined. The crack kinking phenomena is investigated 
by applying the criterion of maximum hoop stress intensity factors. The coupling 
magneto-electro-elastic effects on the crack-tip fields are investigated and the finite size effects on 
the dynamic fracture properties are discussed. 

  

2. Problem statement and method of solution 
 
   Consider a transversely isotropic, linear magnetoelectroelastic material and denote the 
rectangular coordinates of a point by ),,( zyx . The constitutive equations can be written as 
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where zx uu ,  are components of the displacement vector, φ  and ϕ  are the electric and magnetic 

potentials, respectively; 44331311 ,,, CCCC  are elastic constants, 3115 ,ee  are piezoelectric constants, 

3115 ,hh  are piezomagnetic constants, 3311 ,λλ  are dielectric permittivities, and 3311, dd  are 
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electromagnetic constants; ijσ , iD  and iB  ( zxji ,, = ) are components of stress, electric 

displacement and magnetic induction, respectively. 

   We study an electrically and magnetically impermeable crack of length c2  in a 

magnetoelectroelastic layer of width 21 hh + , with the poling direction perpendicular to the crack 

plane, as shown in Fig. 1. Uniform normal stress 0P and in-plane electric field 0E  and magnetic 

field 0H  are applied on the cracked layer. Symmetry conditions can be applied and then it is 

necessary to consider only the region ( 12,0 hzhx ≤≤−≥ ). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. A cracked magnetoelectroelastic layer under in-plane magnetoelectromechanical loadings 
 

      Under the assumption of plane strain, the governing equations take the form 
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   The boundary conditions on the layer surfaces and the impermeable crack faces are: 

021 ),(),( Phxhx zzzz =−= σσ         ( ∞<≤ x0 )                     (3) 
0),(),( 21 =−= hxhx zxzx σσ          ( ∞<≤ x0 )                     (4) 

021 ),(),( EhxEhxE zz =−=          ( ∞<≤ x0 )                     (5) 
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0)0,(,0)0,( == xx zxzz σσ           ( cx <≤0 )                     (7) 
0)0,(,0)0,( == xBxD zz           ( cx <≤0 )                     (8) 

   The continuity conditions for the physical quantities across the crack plane are: 
),0,()0,(),0,()0,( −+−+ == xxxx zzzzzxzx σσσσ        ( cx ≥ )              (9) 

)0,()0,(),0,()0,( −+−+ == xBxBxDxD zzzz ,         ( cx ≥ )             (10) 

)0,()0,(),0,()0,( −+−+ == xuxuxuxu zzxx ,          ( cx ≥ )             (11) 

)0,()0,(),0,()0,( −+−+ == xxxx ϕϕφφ ,              ( cx ≥ )           (12) 
   Fourier transforms are then applied on Eq. (2) and the solutions may be expressed as 
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where ϕφ === zzzz uuuu 321 ,, , jjjjj db =Ω=Ω=Ω 321 ,,1 , )3,2,1( =Τ jj  are constants and 

jjj dba ,, )41( −=j  are known functions defined in Appendix A,  

)4,3,2,1;2,1(),(),( )()( == jnBA n
j

n
j ξξ  are unknowns to be determined and the superscripts 

)2(),1(
 
denote the fields quantities in the upper 10 hy ≤≤  and lower parts 02 ≤≤− yh  of the 

cracked magnetoelectroelastic layer (as shown in Fig. 1), respectively. 

   The roots jγ  ( 41−=j ) are determined from solving the following characteristic equation: 
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   It is noted that the eighth-order characteristic equation (15) has eight roots which occur in pairs 
with the same magnitude but opposite signs, and for complex roots, the roots always appear in 

conjugate pairs. In the expressions (13, 14), the roots jγ  ( 41−=j ) are chosen as 0)Re( >jγ  by 

requiring a positive internal energy for the system to be in a steady state. 
   The expressions for the stresses, electric displacement and magnetic induction can be obtained 
as follows:  
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and the coefficients are defined as: 
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   From the boundary conditions (3-10), the unknown functions ),()1( ξjB
 

),()2( ξjA  )()2( ξjB
 

)41( −=j  can be expressed by the four independent unknowns )41()()1( −=jAj ξ
 
as 

)(),()(
4

1

)1(
1

)1()1( ξξξ ∑
=

=
i

ijij AhRB                               (20) 

)(),,()(
4

1

)1(
21

)2( ξξξ ∑
=

=
i

ijij AhhTA                              (21) 

)(),,()(),()(
4

1

)1(
21

4

1

)2(
2

)2()2( ξξξξξ ∑∑
==

==
i

iji
i

ijij AhhQAhRB                   (22) 

where ),( 1
)1( hRji ξ , ),,( 21 hhTji ξ  and ),( 2

)2( hRji ξ  are known functions. 

    Introduce the auxiliary functions )41()( −=Φ ixi  such that 
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   By applying the solutions (13, 14) and using the Fourier inverse transform, the unknowns can be 
obtained as 
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where )41,()( −=jiYij ξ  are known functions. Satisfaction of the mixed boundary conditions (7, 
8) on the crack face plane leads to the simultaneous singular integral equations 
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where )()( css ii Φ=Ψ , and )41(),( −=ixsijκ  are known  kernel functions, the constants 0
ijU  

are defined as )(lim0 ξ
ξ ijij UU

∞→
= , and )(ξijU  are known functions. The functions ( )41)( −=Ψ isi  

satisfy the single-valuedness condition: 
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   The solution of )(siΨ  may be expressed as 
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where ( )41)( −=isHi  are new unknowns to be solved. 

   The singular integral equations can be solved numerically as [17], [18]:  
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   For ∞→21, hh , 0),( =xsijκ  and from (25) the exact solution can be obtained as 

2
1 1)(,0)( sscss ii −=Ψ=Ψ      ( )42 −=i                      (30) 

where ic  ( )42 −=i  are constants related to 0
ijU . 
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3. Asymptotic fields near the crack tip 
 

   Once the functions )(sH j  ( 41−=j ) are obtained from solving the algebraic equations (28), 

following the procedure in Li and Lee [19], the asymptotic solutions of the magnetoelectroelastic 
fields near the crack tip can be obtained by introducing a polar coordinate system ( θ,r ) with the 
origin at the right crack tip as 

[ ])(tan,)( 122 cxzzcxr −=+−= −θ                         (31) 

   The hoop and shear stresses at an angle θ  near the right tip of the crack are obtained from the 
following relations in terms of the polar coordinates ),( θr  
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   Define the hoop stress intensity factor and shear stress intensity factor associated with the hoop 
and shear stresses at an arbitrary as angle θ  as [20]: 
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==                         (33) 

    The hoop and shear stress intensity factors can be obtained as: 
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where πθ ≤≤0  when 1=n  for the upper part and 0≤≤− θπ  when 2=n  for the lower part 

of the cracked layer, respectively; )(lim0 ξ
ξ ijij YY

∞→
= , and the angular functions )(1 θjΛ  and )(2 θjΛ  

)41( −=j  are defined as 
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   By setting the angle θ  equal to zero, the common expressions for the Mode-I and Mode-II 
stress intensity factors can be recovered 
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   In this paper the criterion of maximum hoop stress intensity factors is applied to predict the 
crack kinking phenomena. It is noted that the applied electric and magnetic loadings and material 
properties have influence on the singular field near the crack tip, as shown in Eqs. (18), (25), (34), 
and (35). 
    
4. Numerical results and discussions 
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   For the magneto-electrically impermeable crack problem, the crack-tip fields are dependent on 
the remote mechanical, electrical and magnetic loading. To study the effect of 
magneto-electro-elastic interaction, the electric and magnetic loading parameters are introduced as:  

00330033 , PHhLPEeL HE ==                            (38) 

   The material constants used in the numerical calculation are selected as BaTiO3-CoFe2O4 
composite [21]: 
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Figure 2. Normalized SIFs versus angle θ  when 3.0,5.0 −=+= HE LL . 

 

   The variation of the normalized hoop and shear stress intensity factors (normalized by cP0 ) 

with angular position θ  are displayed in Fig. 2. Without loss of generality, the applied stress is 

taken as MPa2.40 =P , and the magnitudes of the electric and magnetic loading parameters are 

chosen as 3.0,5.0 −=+= HE LL . The maximum hoop stress intensity factor (HSIF) occurs at 

0=θ  when the crack locates on the central plane of the layer, which indicates that the crack has a 
tendency to propagate along its original plane when the criterion of the maximum hoop stress 
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intensity factor is applied. When 21 hh ≠ , the maximum HSIF occurs at 0≠θ  , which indicates 

that the crack has a tendency to deviate from its original plane. When the HSIFs reach the 
maximum, the magnitude of the SSIF is zero. 
 
 
5. Concluding remarks 
 
    A mixed-mode crack in a magnetoelectroelastic layer under in-plane mechanical, electric and 
magnetic loadings is studied for impermeable crack surface conditions. Fourier transforms are 
applied to reduce the mixed-boundary-value problem of the crack to a system of singular integral 
equations. Asymptotic fields near the crack tip are obtained explicitly and the corresponding field 
intensity factors are defined. The analytic solution of the degenerated case for a cracked infinite 
magnetoelectroelastic solid is recovered when the width of the layer tends to infinity. The crack 
kinking phenomena is investigated by applying the criterion of maximum hoop stress intensity 
factors.  
 

Appendix A 
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