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Abstract  Two three-parameter descriptions for the three-dimensional (3D) crack-tip stress fields have been 
introduced. The three-parameter solution K-T-Tz is developed to describe the linear elastic crack-tip stress 
state, and the J-QT-Tz is to elastic-plastic crack-tip field. The conventional two-dimensional solutions such as 
K, K-T, HRR and the extended J-Q description which considers the in-plane constraint modification can 
hardly provide satisfied description for the three-dimensional crack front fields, especially for the 
out-of-plane stress near the crack front. It is shown that a consideration of the out-of-plane constraint and use 
of the three-parameter description is necessary and efficient to predict the 3D stress fields near the crack 
front. 
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1. Introduction 
 
The complicated three-dimensional (3D) stress fields near the crack front play a vital role in 

the strength of materials [1], and control the initiation and propagation of cracks [2]. The character 
of the stress fields near the crack front has long been extensively studied. The classical linear elastic 
and elastic–plastic fracture mechanics are based on the theory stemming from the one singular term 
of asymptotic expression and its amplitude the stress intensity factor (SIF, K) [3] and HRR solution 
[4, 5], respectively. Then more accurate two-parameter approaches, such as K–T [6], J–T [7], J–Q [8, 
9] and J–A2 [10, 11], have been developed to describe the crack-tip field. These approaches have 
been applied successfully in engineering designs though they are limited to describe the effect of the 
in-plane constraint on the crack-tip field and fracture toughness. In fact, fracture toughness depends 
on the 3D out-of-plane stress level near the crack front also [12]. It is well known that fracture 
toughness depends highly on the thickness of the test specimen until a threshold thickness, beyond 
which the toughness does not decrease further. The toughness at this thickness is called plane strain 
fracture toughness. It is less than the fracture toughness of thinner plates and is a material property. 
So the variable fracture toughness is inconvenient in the engineering applications if the 3D 
out-of-plane stress level is not considered accurately. 

In order to describe the out-of-plane stress level, the out-of-plane stress constraint factor Tz 
was introduced by Guo [13-15], the factor is defined as 
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,     (1, 2, 3)=(x, y, z) or (r, , z)       (1) 

where r, , x and y are coordinates in the conventional polar and Cartesian systems with origin at 
the crack tip and z is the third coordinate (parallel to the crack front) in both systems. The 
corresponding coordinate system and a normal sheet element of a through-straight crack are shown 
in Fig.1. In the state of plane stress, Tz=0. In the state of plane strain, Tz changes from the Poisson’s 
ratio v of the linear elastic material to 0.5 for elastic-perfectly plastic material. 
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Fig. 1 The coordinate system and a normal sheet element of a through-straight crack. 

 
The out-of-plane constraint factor Tz plays an important role in the determination of fracture 

toughness of a structural element. The effect of Tz on 3D crack-front fields and fracture toughness 
were systematically studied by Guo, then the 3D two-parameter principles of K–Tz, J–Tz have been 
proposed [12-16]. Combining with the in-plane constraint T or Q, the 3D three-parameter principles 
of K-T-Tz and J-QT-Tz have also been proposed [13-15, 17-22]. 

In this paper, the recent researches on the 3D three-parameter principles of K-T-Tz and J-QT-Tz 
are emphasisly summarized. The comparisons of the three-parameter principles with two-parameter 
and one-parameter principles are presented. 
 
 
2. Three-parameter principle K–T–Tz for the linear elastic material 
 

Based on the SIF K, the more accurate two-parameter approach K–T was proposed by 
Williams [6] for linear elastic material. For the 3D crack case, the three-parameter principle K-T-Tz 
was developed by Guo [13-15, 17-19] based on the K-T approach, which can be expressed as 
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where T is the T-stress, 
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The three-parameter principle K-T-Tz can describe not only the in-plane constraint by T but also 
the out-of-plane stress constraint by Tz. Then the crack-tip stress fields described by the principle 
K-T-Tz for the typical cracks such as through-the-thickness crack, quarter elliptical corner crack, 
semi-elliptical surface crack and embedded elliptical crack are discussed. The geometry of a plate 
with a quarter elliptical crack under uniform tension is presented in Fig.2, the corresponding FE 
mesh is shown in Fig.3. The 3D singular elements with four mid-side nodes at the quarter points are 
used around the crack front to simulate the inverse square root singularity at the crack tip. The FE 
model in Fig.3 can be used to simulate the semi-elliptical surface crack and embedded elliptical 
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crack by altering the corresponding displacement boundary conditions. 
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Fig.2 Geometry of a plate with a quarter elliptical crack under uniform tension. (a) The 3D 
geometry model. (b) Cracks with different a/c and the local rectangular coordinate system. 

 

 
 

Fig.3 FE model of the quarter elliptic corner crack 
The comparisons of the three-parameter principle K-T-Tz with the FE results are presented in 

Fig. 4. 
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Fig.4 The angular distributions of stress components normalized by the local stress intensity factors 
in a normal plane of the quarter-elliptical corner crack front line. (a) through-the-thickness straight 
crack, (b) semi-elliptical surface crack, (c) quarter elliptical corner crack, (d) embedded elliptical 

crack. 
As shown in Fig. 4, the angular distributions of stress components in a normal plane of various 

crack front lines are given in the local Cartesian coordinates. It can be seen that 22 is in good 
agreement with f22, while the differences between 11 and f11 are great if the T-stress is neglected. 
When the T-stress is considered, the differences will become very small. In addition, the differences 

between 33 and f33 for the plane strain state (v(f11+ f22)) are great. If the Tz factor is considered in f33, 
f33 will be in good agreement with33. 
 
 
3. Three-parameter principle J–QT–Tz for the elastic-plastic material 
 

The HRR stress components can be expressed as 
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σ0 is the yield stress.  

By considering the effects of geometry and size on crack-tip constraint, O’Dowd and Shih [8, 
9] found that the near-tip stress field is governed by the two parameters of J and Q as follows: 
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The first term is the HRR solution ( 2  ), Q is a function of the stress triaxiality achieved 

ahead of the plane strain cracks. The λ is set to zero, then Qrr=Qθθ and Qij is the form 
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The J-Q solution can effectively describe the influence of the in-plane stress parameters when 

the radial distances (r/(J/0)) are relatively small, while the approach can hardly characterize it very 
well with the increase of r/(J/0) and strain hardening exponent n. On the other hand, it can hardly 
give a proper description of Von Mises equivalent stresse because it seldom considers the 
out-of-plane stress constraint, so Guo and his collaborators proposed two 3D three-parameter 
principles of K-T-Tz and J-Q-Tz, combining with the in-plane constraint T or Q, for linear elastic and 
elastic-plastic materials. 

Further researches by Guo [13-15, 20-22] show that I( ) is the function of n and Tz, 
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The di is the function of Tz and n,       , which is same as that in HRR solution. 

The Eq.(8) can be modified 
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where 
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Combining Eq.(9), the relationship between QTij and Qij is 

       
0

zij HRR ij J T

TijQ Q
 




                         (18) 

The comparisons of the three-parameter solution J–QT–Tz with the solutions of J-Q and HRR 
are shown in Fig.5. It is shown that the three-parameter approach J–QT–Tz can describe the 3D 
stress fields effectively.  
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Fig.5 The radial distributions of the stress components. (a) Mean stress for a semi-elliptical surface 
crack, (b) Von Mises equivalent stress σe for a quarter elliptical corner crack, (c) Mean stress for an 

embedded elliptical crack. 
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4. Conclusions 
 
Two three-parameter descriptions for the three-dimensional (3D) crack-tip stress fields have been 

introduced. The three-parameter solution K–T–Tz is developed to describe the linear elastic crack-tip stress 
state, and the J–QT–Tz is to elastic-plastic crack-tip field. The comparisons of the three-parameter 
solutions K–T–Tz, J–QT–Tz with the corresponding two-parameter solutions K-T, J–Q and 
single-parameter solutions K and HRR are presented. It is shown that the three-parameter 
approaches K–T–Tz, J–QT–Tz can describe the 3D stress fields effectively. 
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