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Abstract  Tensile behaviour of concrete is controlled by the generation and growth of micro-cracks. A 3D 
lattice model is used in this work for generating micro-crack populations. In the model, lattice sites signify 
solid-phase grains and lattice bonds transmit forces and moments between adjacent sites. The meso-scale 
features generating micro-cracks are pores located at the interfaces between solid-phase grains. In the model 
these are allocated to the lattice bonds with sizes dictated by an experimentally determined pore size 
distribution. Micro-cracks are generated by removal of bonds when a criterion based on local forces and pore 
size is met. The growing population of micro-cracks results in a non-linear stress-strain response, which can 
be characterised by a standard damage parameter. This population is analysed using a graph-theoretical 
approach, where graph nodes represent failed bonds and graph edges connect neighbouring failed bonds, i.e. 
coalesced micro-cracks. The evolving structure of the graph components is presented and linked to the 
emergent non-linear behaviour and damage. The results provide new insights into the relation between the 
topological structure of the population of micro-cracks and the macroscopic response of concrete. They are 
applicable to a range of quasi-brittle materials with similar dominant damage mechanisms. 
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1. Introduction 
 
The mechanical behaviour of quasi-brittle materials, such as concrete, graphite, ceramics, or rock, 
emerges from underlying microstructure changes. At the engineering length scale it can be 
described with continuum constitutive laws of increasing complexity combining damage, plasticity 
and time-dependent effects [1-4]. In these phenomenological approaches the damage represents 
reduction of the material elastic constants. From the microstructure length scale perspective damage 
is introduced by the nucleation and evolution of micro-cracks. While the population of micro-cracks 
formed under loading could be sufficiently well captured by various continuum damage models, the 
latter cannot help to understand the effects of the population on other important physical properties 
of the material. In many applications the quasi-brittle materials have additional functions as barriers 
to fluid transport via convection/advection and/or diffusion. It is therefore important to take a 
mechanistic view on the development of damage by modelling the evolution of micro-crack 
population, which can inform us about changes in the transport properties. Such a mechanistic 
approach needs to account for the material microstructure in a way corresponding to the mechanism 
of micro-crack formation [5]. Micro-cracks typically emerge from pores in the interfacial transition 
zone between cement paste and aggregate in cement-based materials [6].      
 
Discrete lattice representation of the material microstructure seems to offer the most appropriate 
modelling strategy for analysis of micro-crack populations. This is a meso-scale approach, where 
the material is appropriately subdivided into cells and lattice sites are placed at the centres of the 
cells. Discrete lattices allow for studies of distributed damage without constitutive assumptions 
about crack paths and coalescences that would be needed in a continuum finite element modelling. 
The deformation of the represented continuum arises from the interactions between the lattice sites. 
These involve forces resisting relative displacements and moments resisting relative rotations 
between sites. Two conceptually similar approaches have been proposed to link local interactions to 
continuum response. In the first one, the local forces are related to the stresses in the continuum cell, 
e.g. [7, 8]. In the second one, the interactions are represented by structural beam elements, the 
stiffness coefficients of which are determined by equating the strain energy in the discrete and the 
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continuum cell, e.g. [9, 10]. In both cases explicit relations between local and continuum parameters 
can be established for regular lattices [11], but the only isotropic material that can be represented in 
3D is a material with zero Poisson’s ratio. A bi-regular lattice that can represent all materials of 
practical interest has been proposed recently [12]. This lattice, currently formed by beams clamped 
at sites, is used in the current work together with microstructure data for concrete obtained with 
X-ray computed tomography. Failure models based on microstructure data and the new lattice have 
been previously used for modelling tensile and compressive behaviour of cement [13] and the 
compressive behaviour of concrete under various complex loading conditions [14]. This work 
makes a step into developing our understanding of the micro-crack population and its relation to 
macroscopic damage. 
 
Most of the work relating micro-crack populations to elastic moduli follows the fundamental paper 
[15], where analytical statistical derivation of the relation was provided. We follow the 
interpretation given in [16], in which the damage is measured as a relative change of the elastic 
modulus and related to micro-crack population via 
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where c is some measure of micro-crack size, N(c) is the number of micro-cracks of size c, NT is the 
total number of sites capable of nucleating micro-cracks, and β is a scaling parameter reported as 
0.47π for cracks in a 2D medium. Eq. (1) is our point of comparison for the simulations performed 
with the lattice model for various tensile loading cases. In the current work we are interested in 
testing the range of applicability of Eq. (1) and understanding the reasons for deviation from this 
rule, should such occur, by explicitly analysing the micro-crack population growth. 
 
2. Model and method 
 
2.1. The site-bond model 
 
The lattice model used in this work is illustrated in Fig. 1. The unit cell, shown in Fig. 1(a) is a 
truncated octahedron – a solid with six square and eight regular hexagonal boundaries. The 3D 
space can be compactly tessellated using such cells, with each cell representing a material 
meso-scale feature, e.g. grain, in an average sense. This representation is supported by physical and 
statistical arguments [12]. A discrete lattice is formed by placing sites at the centres of the cells and 
connecting each site to its 14 nearest neighbours; example is shown in Fig. 4(b). The lattice contains 
two types of bonds. Bonds denoted by B1 are normal to square boundaries and form orthogonal set. 
For convenience this set is coincident with the global coordinate system and B1 are referred to as 
principal bonds. Bonds denoted by B2 are normal to hexagonal boundaries. The hexagons lie on the 
octahedral planes with respect to the selected system, hence B2 are referred to as octahedral bonds. 
 

           
Figure 1. Lattice illustration: (a) Unit cell showing the site with 14 coordinating bonds: six principal, B1, and 

eight octahedral, B2; (b) Discrete lattice of beam elements. 
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If the spacing between sites in the principal directions is denoted by L, bonds B1 have length L1 = L, 
and bonds B2 have length L2 = √3 L / 2. Presently, the bonds are represented by structural beam 
elements of circular cross sections, with R1 and R2 denoting the radii of beams B1 and B2, 
respectively. The beams are clamped at the lattice sites. The two types of beams have identical 
modulus of elasticity, Eb, and Poisson’s ratio, νb. With this setup, it has been previously shown that 
by calibrating four parameters: R1 / L, R2 / L, Eb, and νb, the lattice can produce a large class of 
isotropic elastic materials with Poisson’s ratios of practical interest [12]. The reference material in 
this work is a concrete with E = 46 GPa and ν = 0.27, for which the calibration, assuming isotropic 
elasticity, yields R1 / L = 0.2; R2 / L = 0.32; Eb = 90 GPa; and νb = 0.4 [14]. The commercial 
software Abaqus [17] with Euler-Bernoulli beam formulation has been used for the calibration and 
the analyses reported in this work. The behaviour of the beams is linear elastic. 
 
2.2. Pore distribution and failure criterion 
 
Microstructure data for the reference material was obtained using X-ray Computed Tomography as 
reported in [14]. The pore size distribution was obtained by segmentation of reconstructed 3D 
images. The studied regions of interest had dimensions of 1700 x 1200 x 1200 voxels with a voxel 
size of ca. 15 μm, allowing for a minimum detectable pore radius of ca. 15 μm. The number of 
pores measured experimentally was n ≈ 41500. The measured pore radii, ci, were used to construct a 
cumulative probability distribution (CPD) with standard median ranking, where for pore radii 
ordered as c1 ≤ c2 ≤…≤ cn, the cumulative probability for pores with radii less than ci is given by F(c 
< ci) = (i - 0.3) / (n + 0.4). The CPD for the reference material is shown in Fig. 2(a), where the 
minimum and maximum pore radii are also depicted. The CPD is used to assign pore sizes to the 
lattice bonds. For each bond a uniformly distributed random number 0 ≤ r < 1 is generated and the 
assigned pore radius is calculated from c = F-1(r). This ensures that the distribution of pore sizes in 
the model comes from the same population as in the experiment. A fragment of the model with 
distributed pores is given in Fig. 2(b). The cell size, L, is calculated such that the volume of all 
distributed pores divided by the volume of the cellular structure equals the material porosity, which 
is ca. 5% for the reference material. The pore sizes shown are to scale with the sketched cellular 
structure. With respect to the cellular structure pores reside at cell boundaries, i.e. interfaces 
between grains. The lattice bonds are also depicted (diameters not to scale) in order to show that 
pores reside at bond centres. 
 

           
Figure 2. Pore distribution: (a) Cumulative probability of pore radii in the concrete; (b) Segment of model 
illustrating pores distributed to cell boundaries and corresponding. Pore sizes are to scale with the cell size. 

 
Damage in the lattice model is introduced by removal of bonds. Propensity for bond failure is 
measured by the parameter 
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where N and S are the normal and shear forces in the beam; T and M are the twisting and bending 
moments; Nf, Sf, Tf, and Mf are critical values. N is positive for tension and negative for compression. 
S and M are obtained from the values in the two directions normal to the beam axis using the square 
root of squares rule. Eq. (2) provides an interaction between the different forces that allows for 
failure when Π ≥ 1 under the combined action of normal and shear stresses [18, 14]. Taking only 
the first and fourth term was previously used in criteria with no account for shear, e.g. [19]. The 
second and third term allow for shear failure similarly to [10]. The failure parameters Nf, Sf, Tf, and 
Mf can be related [18]. For a beam of circular cross section of radius R, the tensile failure stress is σf 
= Nf / (π R2). The maximum bending stress is σmax = 4M / (π R3), which equals σf when Mf = Nf R / 4. 
Similarly, the shear failure stress is τf = Sf / (π R2). The maximum torsion stress is τmax = 2T / (π R3), 
which equals τf when Tf = Sf R / 2. Thus Π requires two material parameters: σf and τf. Noting that 
for quasi-brittle materials typically 1 ≤ τf /σf ≤ 2 [18], in this work τf = 2σf is used, representing 
more brittle materials. 
 
The tensile failure strength of a bond, σf, is related to the size of the pore assigned to the bond. The 
relation used here is simpler than in the previous work [14] and based on the assumption that σf is 
the beam remote stress for which the average stress in the beam ligament outside the pore attains a 
critical value σ0. Thus 
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where c and R are the pore and beam radii, respectively, and σ0 can be interpreted as the tensile 
strength of the material without a defect. With this setup and the choice τf = 2σf the failure model 
requires a calibration of a single parameter, σ0, against experimental stress-strain curve. However, 
since the beams behaviour is linear elastic, the choice of σ0 would affect only the calculated 
macroscopic stresses but not the order in which damage (beam failures) would evolve in the system. 
Because the interest here is investigating the evolution of damage, σ0 = 1 MPa is used for the 
calculations, noting that macroscopic stress response can be simply scaled by another value of σ0. 
 
2.3. Load cases and solution 
 
A model of size (20L, 20L, 20L) was used. The lattice contained 17261 sites and 113260 bonds: 
49260 B1 and 64000 B2. The coordinate system (X1, X2, X3) was coincident with B1, so that the 
boundary planes X1 = 0, X1 = 20L, X2 = 0, X2 = 20L, X3 = 0, X3 = 20L contained 21×21 sites (nodes). 
Boundary conditions normal to each plane were only applied. Thus Ui and Fi denote displacements 
and forces of nodes on plane with normal Xi, while other displacements and rotations on this plane 
were unconstrained. Table 1 shows the conditions on planes X1 = 20L, X2 = 20L, and X3 = 20L for 
the analysed cases. Additionally, U1 = 0 on X1 = 0; U2 = 0 on X2 = 0; U3 = 0 on X3 = 0, apply to all.  
 

Table 1. Boundary conditions for loading cases.  
Values given in bold denote applied conditions. A stands for values obtained from finite element analyses. 

Case U1 U2 U3 F1 F2 F3 Note
C1 d1 A A A 0 0 Uniaxial unconfined extension
C2 d2 d2 A A A 0 Plane stress
C3 d3 d3 0 A A A Plane strain
C4 d4 0 0 A A A Uniaxial confined extension

 
For cases where nodal reaction forces were determined from analysis, the macroscopic stress in the 
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respective direction was calculated as the ratio between the total reaction force and the boundary 
area, i.e. σi = ΣFi / 400L2. For the cases where nodal displacements were determined from analysis, 
the macroscopic strain in the respective direction was calculated as the ratio between the average 
displacement and the model length, i.e. εi = ΣUi / (212×20L). 
 
The evolution of damage was simulated by failure of bonds, controlled by an in-house code, and 
repetitive solution for equilibrium performed by Abaqus with constant applied displacements. The 
values of di were selected so that the strain energy density in the system prior to damage was one for 
the four cases for the purpose of comparison. At each step the in-house code obtains the forces and 
moments in all bonds and calculates the propensity for failure, Π, for each bond. The bond with 
maximum Π is then removed and the updated lattice is solved for equilibrium. This leads to 
redistribution of forces for the continuous damage evolution. The magnitudes of Π at which 
consecutive failures occurred can be used to cut-back the applied strain and resulting stress and 
obtain a macroscopic stress-strain response. The focus of this work is not on determining the 
stress-strain response, but on the relation between damage and crack population. To this end we 
define four damage parameters, measuring the relative changes of the hydrostatic stress and the 
three components of the stress deviator by: 
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Note that for isotropic deformation and damage these parameters must be equal and equivalent to 
the damage parameter defined via relative reduction of Young’s modulus or shear modulus. 
 
2.4. Crack population analysis 
 
A bond failure is thought of as a micro-crack nucleation, specifically as a separation between the 
adjacent cells in the cellular structure along their common face. Initially, the micro-cracks may be 
dispersed in the model reflecting the random distribution of pore sizes and the low level of 
interaction due to force redistribution. Interaction and coalescence may follow as the population of 
micro-cracks increases. The structure of the failed surface can be represented with a mathematical 
graph, where graph nodes represent failed faces and graph edges exist between failed faces with 
common triple line in the cellular structure, i.e. where two micro-cracks formed a continuous larger 
crack. Generally, the graph of a failed surface is a disconnected set of sub-graphs or components, 
some of which could be single nodes as at the start of damage evolution, while others could be 
connected sets representing larger micro-cracks as the coalescence develops. For the analysis, nodes 
are equipped with weights equal to the failed face areas. Edges are equipped with weights equal to 
the shortest path along connected faces between their centres.  
 
The components of a failed surface graph are sorted into sets according to their areas A1 < A2 … < 
Ak, so that each set contains Ni disconnected components of area Ai. The linear size of a component 
is approximated with the square root of its area so that the moment of the crack population is 
formed using (compare to Eq. (1)) 
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where AT is the total area of the faces in the cellular structure. This can in principle be replaced with 
a linear measure to conform to Eq. (1). A realistic choice is to use the component diameter which is 
the maximal shortest path between component’s nodes calculated with the weighted edges. The 
process, however, is computationally expensive and does not lead to noticeable changes in the 
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results for the cases analysed here. Eq. (5) is used after each failure event to calculate the evolution 
of the moment with damage. In addition, the maximal component is monitored. This is the largest 
connected cracked surface. 
 
3. Results and discussion 
 
Figure 3 shows the results of the evolution of the damage parameters defined by Eq. (4) as functions 
of the moment of crack population defined by Eq. (5). Recall that a damage parameter, based on the 
relative change of the Young’s modulus equals the damage parameters based on the individual stress 
components, deviatoric and hydrostatic, when the material remains macroscopically isotropic. In 
this case the same damage parameter describes the relative change of the shear modulus. The results 
for the cases of uniaxial extension, unconfined (a) and confined (d), show equality of the four 
damage parameters (approximate in case 4). This suggests that microscopic isotropy is maintained 
during damage evolution and the results reproduce very closely the linear relation predicted by the 
theory and given by Eq. (1). Interestingly, an estimate for the slope of the linear function from the 
figures is about 1.5, which is very close to the value of β reported in relation to Eq. (1). 
 

      

      
Figure 3. Damage parameters relation to crack population moment. 

 
In the cases of plane stress (b) and plain strain (c), however, the development of damage is radically 
different, illustrating the development of damage-induced anisotropy. In this case the damage 
parameter Di represents the relative reduction of the longitudinal shear modulus in direction Xi. 
Note that this is not the shear modulus relating shear stress to shear strain. In both plane cases, the 
evolution of D1 suggest that the system undergoes transition into negative longitudinal shear 
resistance, quite more pronounces in the plane strain case (c), while the shear resistance in direction 
X2 increases from its initial value. This behaviour may seem unusual, but it is not impossible for 
anisotropic materials. The bounds for Poisson’s ratios in such materials calculated in [20, 21] allow 
for negative longitudinal shear moduli with the values recorded here. The results merely show that 
extreme anisotropy has been developed in the material with the evolution of micro-crack population 
under the two plane cases. The development of the hydrostatic damage is also affected in these 
cases, as it cannot be described as a linear function of the cracked area moment. 
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To understand what causes the anisotropy in the plane cases the structure of the crack population 
needs to be studied in more detail. This requires a single damage parameter; an appropriate choice 
is the relative reduction of the strain energy density in the system, D = 1 – W / W(0), which is found 
to be approximately equal to the damage parameter defined via the relative reduction of the 
hydrostatic stress in all cases, see Fig. 4(a). The development of the maximal graph component, i.e. 
the main crack, with damage is shown in Fig. 4(b) with the ratio between the area of the maximal 
component, Am, to the total cracked area, A. It is clear that the main crack becomes dominant very 
early in the development of damage (at damage less than 1%) and its relative area grows nearly 
exponentially for all cases. It seems therefore sufficient to examine the structure of the maximal 
component as the damage develops. 
 

      
Figure 4. Hydrostatic damage (a) and relative area of main crack (b) development with damage defined as 

relative reduction of strain energy density. 
 
Figure 5 shows the development of the maximal component area, split into the areas of surfaces 
normal to the three principal axes, A1, A2, A3, and the surfaces formed on octahedral planes, A4. All 
areas are normalised with the total areas of the corresponding boundaries in the cellular structure. In 
the cases of uniaxial extension, unconfined (a) and confined (d), the development of the main crack 
involves creation of surfaces normal to the applied load and on octahedral planes. Although there is 
a difference between the two cases in the rates of creation of normal and octahedral surfaces, the 
overall balance results in isotropic damage, see Fig. 3(a),(d). 
 

      

      
Figure 5. Structure of maximal graph component with damage. 
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In the plane stress (b) and plane strain (c) cases, the development of the main crack follows very 
different patterns. The parallel increase of normal to the first loading axis and octahedral surfaces in 
plane stress, Fig. 5(b), seems to be responsible for the immediate development of damage-induced 
anisotropy, which after that appears to be moderated by the development of surfaces normal to the 
second loading axis. The constraint in plane strain, Fig. 5(c), leads to a delayed but rapid increase of 
surfaces normal to the first loading axis together with a lower rate of creation of octahedral surfaces. 
This appears to delay substantially the development of cracked surfaces normal to the second 
loading axis and results in significantly higher anisotropy.  
 
It should be noted that the structure-damage relations reported here were found qualitatively 
independent of the random assignment of pores in the lattice model as well as of the shape 
parameter of the pore distribution. This has been confirmed by a number of simulations with 
different shape of distribution and random assignments. One parameter that may affect the 
outcomes is the shear to normal strength ratio; this is a subject of ongoing work. It is further 
understood that the outcomes reported here are principally related to the selected lattice connectivity. 
However, the detail to which the surface topography can be studied is higher than the detail allowed 
by models based on cubic lattices. One unknown in the analysis is whether the crack development 
in the lattice is energetically equivalent to the development of continuum cracks. This question 
remains to be addressed in a future work. The current observations suggest that a common, 
constraint independent, damage evolution law might not be feasible to achieve. In such case it 
seems that a lattice-based analysis might be necessary as a sub-modelling approach to inform the 
behaviour of finite elements in a continuum model. 
 
The last question of interest in this work is related to the use of the weakest-link statistics for global 
failure predictions. It was suggested in [16] that weakest-link should be applied to the population of 
micro-cracks in the system. However, from the simulations performed here it is evident that a single 
crack, the maximal connected component of the cracked surface, becomes rapidly dominating the 
behaviour, Fig. 4(b), with few much smaller components disconnected from the main crack. This 
does not allow for invoking the weakest-link as a descriptor of final failure.  
 

      

      
Figure 6. Probability density of pore sizes in the lattice (a) and in the maximal component at failure for three 

loading cases (b)-(d). Results obtain with the same distribution given by (a). 
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Another approach would be to base the weakest-link statistics on the microstructure information, in 
this case the size distribution of crack-initiation features, the pores. This is similar to the approach 
used in the modelling of cleavage fracture, where second-phase particles are considered to be 
cleavage initiators. In order to show whether this is a realistic approach, a comparison is made 
between the probability density of pore sizes distributed in the lattice and pore sizes contained in the 
maximal component at failure. The results are shown in Fig. 6 for the pores in the entire lattice (a) 
and three of the loading cases as depicted. The results shown correspond to one and the same 
random assignment of pore sizes. Evidently, the probability density of the pores belonging to the 
final fracture surface is different from the lattice distribution and depends on the loading mode. 
While the initial damage may start at one and the same location in the system, the nature of loading 
develops the main crack in different ways and the final failure cannot be described as a weakest-link 
event using the statistics of the sizes of the failure initiation sites. This makes it difficult to derive a 
load-independent, purely micro-structure based relation between the macroscopic damage and the 
probability of failure. The outcome supports further the suggestion that macroscopic failure analysis 
needs to be performed with an underlying lattice-based analysis of local micro-crack propagation. 
 
4. Conclusions 
 

• A microstructure-informed strategy for analysis of damage evolution in quasi-brittle 
materials was presented, whereas damage results from the formation, growth and interaction 
of a population of micro-cracks. 

• It was demonstrated that in cases of non-uniaxial extension, such as plane stress or plane 
strain found ahead of a main crack, the micro-crack population development was 
responsible for elastic anisotropy with extreme variations of longitudinal shear moduli. 

• It was shown that the damage-induced anisotropy was a complex function of the crack 
population structure. A load-independent damage evolution law might not be achievable and 
explicit analysis of crack population development, e.g. using a lattice model, might be 
necessary to complement continuum finite element analysis of failure. 

• It was shown that the maximal connected component of the crack population, i.e. the largest 
crack, became dominant very early in the process of macroscopic damage and controlled the 
ultimate failure. The analysis if this component suggested that the global failure could not be 
treated as a weakest-link event. 

• The graph-theoretical approach to the analysis of micro-crack populations showed 
significant potential to reveal the underlying topological structure of the cracked surface. 
Further work is required to link the topological structure to a measure for global probability 
of failure.  
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