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Abstract In this paper, the dynamic response and sound radiation of sandwich plate subjected to an acoustic 
excitation under thermal environment are analyzed. The thermal environment is a uniform temperature load. 
Thermal stress is considered as the membrane force in the plate, while the change of the material property 
due to the thermal load is ignored. The acoustic excitation applied on the sandwich plate is assumed to be a 
plane wave. Coupling of the structural vibration and acoustic medium is considered. The equivalent 
non-classical theory, which takes the effects of rotational inertia and shear deformation into account, is 
utilized to get the analytical solutions. The effects caused by thermal environment and acoustic excitation are 
discussed. It is found that the rise of thermal load decreases the natural frequencies and moves response 
peaks to the low-frequency range. The acoustic excitation doesn’t influence the natural characteristics of the 
sandwich plate, but the incident angle is relative to the number of evident peaks on the response curve. The 
comparisons of the analytical results and those computed by VA one show the accuracy of the theoretical 
method. 
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1. Introduction 
 
Sandwich plates are extensively used in the thermal protection system, which is utilized to protect 
the structure from the damage caused by the high temperature resulting from aerodynamic heating. 
During the course of the flight, the sandwich plate is exposed to high temperature and harsh 
mechanical, acoustic excitation. In order to use them efficiently, a good understanding of the 
dynamic and acoustic characteristics of the sandwich plate under such situation is necessary. 
Vibro-acoustic problems of the structures under thermal environment are of great concern. N. 
Ganesan et al [1, 2] have analyzed vibration and sound radiation characteristics of composite plates 
under thermal environment numerically. Li et al [3-5] have carried out vibro-acoustic analyses for 
structures under thermal environment, including the broadband vibro-acoustic response based on 
hybrid FE-SEA [3], the influence of thermal stress with numerical method [4], and analytical 
solution for the dynamic and acoustic characteristics of an isotropic plate in thermal environments 
using classical plate theory [5]. Although a lot of vibro-acoustic problems under thermal 
environment have been analyzed, few studies can be found for sandwich plates, especially, lack of 
theoretical investigations. 
The aim of this paper is to analyze the vibration and acoustic characteristics of a sandwich plate 
subjected to an acoustic excitation under thermal environment. Based on the equivalent 
non-classical theory, this study considers the effects of the shear deformation and the rotational 
inertia but ignores the compressional deformation. The coupling between the plate and the acoustic 
medium is taken into account. The influences caused by the thermal environment and the incident 
angle of the plane wave on the sandwich plates are deeply discussed in the present study. 
 
2. Fundamental formulations 
 
A sandwich plate with dimensions of 1 2(2 )a b h h× × +  is considered here, as shown in Fig. 1. The 
plate consists of two isotropic materials for facings and core respectively. The subscripts in the 
parameter expressions identify the specific materials, 1 for those of facings and 2 for those of core.  
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Figure 1. Sandwich plate model 

 
2.1. Governing equations 
 
Based on the non-classical theory, and by adopting the Власов assumption, the governing equations 
for dynamic analysis considering the membrane forces can be derived as [6]: 
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where 1 22h h h= + , xN , yN  and xyN  are membrane forces, for this paper, they are generated by 

thermal stresses. zG , D , ν , hρ  and Jρ  are equivalent compositional parameters defined as: 
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The plate is assumed to be stress-free at the reference temperature 0T . If the plate works under the 

temperature T , different from 0T , the stress state of the plate will be changed due to the thermal 

stresses. In this study, all edges are assumed to be simply supported with no in-plane displacement 
and the temperature is assumed to be uniformly distributed, so the thermal stresses caused by the 
temperature can be expressed as Eq. (7) [7]: 

 0 ( 1 2)
1 1

i i
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− −  (7) 

where 0T T TΔ = − . 

The stress resultants caused by thermal stress can be obtained by integrating Eq. (7) along the 
thickness: 
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2.2. Natural frequency and mode 
 
Considering the boundary condition, the modes can be assumed as Eq. (9): 
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Suppose the displacement responses to be expressed as Eq. (10): 
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Substituting Eq. (10) into Eq. (1) and letting q  to be zero, Eq. (11) can be obtained: 
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Substituting Eq. (9) into Eq. (11), one can get a homogeneous linear equations set about ( )
mn

pA , 
( )
mn

pB and ( )
mn

pC . In order to get one set of solution, let 1, ( )
mn

pb  and ( )
mn

pc  take the place of them 
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respectively, where ( ) ( ) ( )/
mn mn mn

p p pb B A=  and ( ) ( ) ( )/
mn mn mn

p p pc C A= . Thus mode shapes can be rewritten as 
Eq. (12): 
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If a homogeneous linear equations set exists nonzero solutions, its determinant of the coefficient 
matrix should be zero. Thus the natural frequency can be obtained by solving Eq. (13): 
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While ( ) 0p
mnω = , the critical buckling temperature can be acquired. 

By putting the natural frequencies into the equations, the coefficients can be obtained: 
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Considering Eq. (14), Eq. (15) and Eq. (12), one can determine the mode shapes. 
 
2.3. Dynamic analyses 
 
Dynamic responses of the sandwich plate which is subjected to a plane sound wave are discussed in 
this section.  
 
2.3.1. Acoustic load 
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Figure 2. Incident plane wave 

 
The incident angles of plane sound wave are shown in Fig. 2. If neglect the vibration of the plate, 
the incident and reflected sound pressure can be expressed as Eq. (16-17) [8]: 
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The dynamic response of an elastic plate excited by the incident wave can modify the resultant 
sound wave. The plate and acoustic medium have the same normal velocity on the interface. Use 
Rayleigh’s integral (Eq. 18) to calculate the scattered sound pressure produced by the elastic 
vibration of the plate [9]. 
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An additional pressure components, associated with the wave transmitted into the other side of plate, 
is added to the loading term in the governing equations. The two plate surfaces partake in identical 
motions, and the acoustic medium on both sides of the plate are of the same. The phase is, however, 
different. Thus, on the plate surface this transmitted pressure tp  takes the value sp− [8]. 
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Resultant acoustic excitation is of the form: 

 ( , , ) i r s tq x y t p p p p= + + −  (20) 

Considering Eq. (16-19) and Eq. (20), the loading (Eq. 21) can be obtained: 
2 2

0 0

0

i ( ) ( )2
i i sin ( cos sin ) i0 0 01 2

02 2
0 0

( , )2( , , ) 2 cos( cos )e e  
2 π ( ) ( )

k x x y y
t k x y t

i
S

e w x yh hq x y t P k dS
x x y y

ω φ θ θ ωρ ωφ
− − + −

− ++
= −

− + −
∫  (21) 

 
2.3.2. Vibration responses 
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Based on mode superposition principle, the dynamic displacement responses can be expanded as Eq. 
(22): 
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Solving Eq. (24), one can obtain the displacement response. By taking derivative with respect to t , 
the velocity can be acquired. In accordance with the Rayleigh’s integral, the sound pressure at the 
observation point ( , ,p p px y z ) above the plate can be got using the velocity (Eq. 25):  
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3. Validation 
 
A simply supported rectangular sandwich plate with dimensions of 400×300×10 mm is considered 
here for numerical studies, which are carried out to test the validity of the analytical solution.  
0.5 mm and 9 mm are the thickness for the facings and the core respectively. The properties for 
them are listed in Table 1. Structural damping ratio is taken as 0.001. 
Use Nastran to test the natural frequencies and modes with FEM (finite element method). The 
comparisons of the analytical results with those got by numerical approach are shown in Table 2, 
from which one can see that the two sets of results match with each other very well. 

 
Table 1. Material properties 

Material Young modulus Poisson’ Density Coefficient of thermal expansion
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(GPa) ratio (kg m-3) (℃-1) 

Facing 70(1 0.001i)+  0.3 2700 2.3E 5−  
Core 7(1 0.001i)+  0.3 1000 1.8E 5−  

 
Table 2. Comparisons of the natural frequencies 

With temperature load of 50℃ 
Modes Numerical 

(Hz) 
Analytical 

(Hz) 
Error 
(%) 

(1,1) 245.56 255.44 4.02 
(2,1) 645.10 659.75 2.27 
(1,2) 955.35 963.44 0.85 
(3,1) 1290.6 1304.5 1.07 
(2,2) 1318.9 1346.7 2.11 
(3,2) 1928.3 1970.6 2.19 
(1,3) 2079.4 2079.7 0.02 
(4,1) 2166.4 2174.8 0.39 

 
Numerical dynamic responses, used to test the analytical solutions, are obtained using VA one. FEM 
is utilized to acquire the velocity response, caught at (0.1m, 0.1m), while BEM (boundary element 
method) is used to get sound pressure level, caught at (0.1m, 0.1m, 3m). 
 

 
          a. Velocity                           b. Sound Pressure Level 

Figure 3. Comparisons of dynamic responses 50 C 30 0T φ θΔ = ° = ° = °   
 

From Fig. 3, one can find out that the trends of the response are of the same. There are both three 
evident peaks on each curve. So far, it could be believable that the present analytical solution is 
correct based on the above mutual validation. 
 
4. Discussion 
 
4.1. Different thermal loads 
 
Thermal load can change the intrinsic property and influence the dynamic characteristics of the 
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sandwich plate. To understand the effects caused by the thermal load, several uniform temperature 
loads, 0 C, 50 C, 90 CTΔ = ° ° ° , are imposed on the plate, whose buckling temperature is verified to 
be 94 C° . 
 

 
Figure 4. Natural frequency and relative difference 

 
The natural frequencies of the sandwich plate subjected to different thermal load are shown in Fig. 
4, from which the trend that the natural frequencies reduce with the temperature rising can be seen 
obviously. The modes for the plate are the same under different temperature. The relative frequency 
difference of the first natural frequency is much greater than others, which means the effect induced 
by thermal load is more obvious in fundamental frequency. 
The incident sound wave which is perpendicular to the plane is applied to the plate. The velocity 
response at (0.1m, 0.1m) and the sound pressure level responses at (0.1m, 0.1m, 3m) are shown in 
Fig. 5, from which, one can observe that with the thermal load increasing, the peaks of vibration 
and acoustic responses float to low-frequency range.  
 

 
a. Velocity                              b. Sound Pressure Level 

Figure 5. Dynamic responses 
 

4.2. Different incident angles 
 
Plane waves with incident angle of 0 0° − ° , 30 0° − ° , 30 30° − °  are applied on the sandwich plate 
to discuss the influence caused by the incident angle. Different from the thermal load, the plane 
sound wave doesn’t change the natural characteristics of the plate. Only the dynamic response is 
affected. The plate is also subjected to a uniform temperature load of 50 C° . 
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a. Velocity                             b. Sound Pressure Level 

Figure 6. Dynamic responses 
 

From Fig. 6, It is found that the number of the evident peaks is associated with the incident angle of 
the acoustic excitation. Because the excitation can’t influence the natural frequency, the frequencies 
of peaks on each curve correspond to the natural frequencies of the sandwich plate under the 
temperature rise of 50° . The first-order natural mode is markedly excited by all these three sound 
wave. The three curves are overlapping in the low frequency. 
 
5. Conclusion 
 
In this paper, a method to analyze the dynamic response and sound radiation of the sandwich plate 
under thermal environment is presented. 
The influences caused by thermal environment and acoustic excitation on the sandwich plate are 
discussed in this paper. Sandwich plates subjected to different thermal loads present different 
natural property. The natural frequencies decrease and the modes remain the same when the thermal 
load rises. Thermal environment influences fundamental frequency remarkably, while the effect is 
less obvious in high natural frequency domain. On the other hand, the dynamic responses are also 
changed by the thermal load. As the thermal load increases, the peaks of response float to 
low-frequency range.  
The plate imposed on the plane sound wave with different incident angle is analyzed. The acoustic 
excitation can’t affect the natural characteristics of the plate, but the dynamic response is highly 
associated with the incident angle of the plane wave. Plane waves with different incident angles can 
excite different number of the evident peaks on the response curve, but the corresponding frequency 
of each peak can’t be affected. 
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