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Abstract  To study the effect of fractu,re fill on the elastic anisotropy of the rock and frequency-dependent 
attenuation and dispersion in fractured reservoirs, a model for porous and fractured medium is developed. In 
this model, the fractured medium is considered as a periodic system of alternating layers of two types: thick 
porous layers representing the background, and very thin and highly compliant porous layers representing 
fractures. By taking the simultaneous limits of zero thickness and zero normal stiffness of the thin layers, we 
obtain expressions for dispersion and attenuation of the P-waves. The results show that in the low-frequency 
limit the elastic properties of such a medium can be described by Gassmann equation with a composite fluid, 
while the P-wave speed is relatively high at high frequencies for two layers can be treated as ‘hydraulically 
isolated’. However, there appears to be a critical case where no dispersion is observed, which is caused by 
the balance of fractures compliance and fluid compressibility filling in them. 
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1 Introduction 

 

Flow of the pore fluid by the passing wave is widely believed to be the main cause of attenuation 
and dispersion of elastic waves in porous rocks. In particular, flow that occurs due to spatial 
variations of rock or fluid properties on mesoscopic scale (larger than the pore size but smallerthan 
the wavelength) is considered to be significant at seismic frequencies [1-4]. The magnitude of 
attenuation and dispersion caused by mesoscopic wave-induced flow is proportional to the squared 
contrast (variance) of spatial variations of rock or fluid properties. Thus attenuation and dispersion 
are only significant if the contrast of spatial variations is large. 
 
In recent years, two situations with large contrast in rock/fluid properties have been identified: 
partial saturation and fractured rock. Partial saturation refers to the situation where a rock is 
saturated with a mixture of two immiscible fluids with large difference between their properties (say, 
liquid and gas). When an elastic wave propagates through such a rock, the patches of rock saturated 
with gas and liquid will deform differently, resulting in pressure gradients and fluid flow [5-8]. 
Fractured rock refers to a situation where a porous rock is permeated by open fractures. When a 
wave propagates through such a rock, fractures will deform to a greater extent than the porous 
background, resulting in fluid flow between pores and fractures [9-13]. These situations (partial 
saturation and fractures) are usually treated separately: analysis of wave propagation in a partially 
saturated rock usually ignores variations in elastic properties of the solid frame, while the porous 
rock permeated by fractures is usually assumed to be saturated with a uniform fluid. However, in 
some situations, particularly when a fluid such as water or carbon dioxide is injected into a tight 
hydrocarbon reservoir, fractures may be filled with a different fluid (with capillary forces 



preventing fluid mixing). In this paper we consider the simplest situation of this kind: a porous rock 
saturated with one fluid and permeated by a single set of aligned planar fractures filled with another 
fluid. For such a medium, we derive a dispersion equation following a method originally proposed 
by Brajanovski et al. [12] for a porous fractured medium saturated with a single fluid. 
 
The paper is organized as follows. First, we review the theory in case of a medium saturated with a 
single fluid. Then we extend the method to the situation where the porous background and fractures 
are saturated with different fluids and derive the corresponding dispersion equation, which yields 
expressions for dispersion and attenuation due to wave induced flow between pores and fractures. 
To explore the behavior of attenuation and dispersion, we explore various limiting cases and present 
several numerical examples. Finally, we discuss the physical nature of the results obtained. 
 

2 Liquid saturated porous and fractured medium 

 
Brajanovski et al. [12] developed a model for a porous medium with aligned fractures. The medium 
comprises a periodic (with spatial period ܪ) stratified system of alternating layers: relatively thick 
layers of a background material (with a finite porosity ߶௕ ) and relatively thin layers of a 
high-porosity material representing the fractures. This double porosity model is a limiting case of a 
periodically layered poroelastic medium studied by White et al. [1] and Norris [14]. Norris  
showed that for frequencies much smaller than Biot’s characteristic frequency ߱୆ ൌ ߶ߟ ⁄୤ߩ݇ , and 

also much smaller than the resonant frequency of the layering ߱ୖ ൌ ୮ܸ ⁄ܪ , the compressional wave 

modulus of a periodically layered fluid-saturated porous medium composed of two constituents, b 
and c, can be written in the form: 
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In Eq. (1), both constituents are assumed to be made of the same isotropic grain material with bulk 

modulusܭ୥, shear modulus ߤ୥ and density ߩ୥, but they have different solid frame parameters: 

porosity߶, permeability ݇, dry bulk modulus ܭ, shear modulus ߤ and thickness fraction	݄. The 
layers b and c may be saturated with different fluids with bulk modulus ܭ୤, density ߩ୤ and 

dynamic viscosity ߟ, as indicated by adding ‘b’ and ‘c’ in the subscript. Parameter ܥ௝ ൌ ௝ܮ ൅ ௝ߙ
ଶܯ௝ 

denotes the fluid-saturated P-wave modulus of layer ݆ given by Gassmann’s equation [15], where 

௝ߙ ൌ 1 െ
௄ೕ
௄ౝ

 is Biot’s effective stress coefficient, ܯ௝  is pore space modulus defined by 
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 and ܮ௝ ൌ ௝ܭ ൅  .݆ ௝/3 is the dry P-wave modulus of the layerߤ4

 
To construct a model for a porous medium permeated by parallel fractures, Brajanovski et al. [12] 
considered parameters with subscript b to represent the porous background, and parameters with 
subscript c to represent fractures (cracks). They then assumed fractures to be very thin and very 



compliant layers and thus considered Eq. (1) in the limit ݄ୡ → ୡܭ ,0 → 0 and ߤୡ → 0 such that 
both ܭୡ and ߤୡ (and hence ܮୡ → 0) are O(݄ୡ). By assuming that both pores and fractures are 
saturated with the same fluid with the viscosity ߟୠ ൌ ୡߟ ൌ  Brajanovski et al [12] obtained the ,ߟ
equation 
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Where ܼ୒ ൌ lim௛ౙ→଴
௛ౙ
௅ౙ

 is the normal excess fracture stiffness of the dry frame given by 

Schoenberg and Douma [16]. Implicit in the derivation of Eq. (2) was an assumption 
୤ܭ  ≫ ݄ୡ/ܼ୒, (3) 
When both pores and fractures are saturated with a liquid, Eq. (2) exhibits significant attenuation 
and velocity dispersion. However the model is limited to the case where the fluid is the same in 
both matrix pores and fractures, and there is an upper limit on the fluid compressibility (Eq. (3)). 
Below we develop a model that overcomes these limitations. 
 

3 Arbitrary fluid in the fractures 

 
The analysis in the previous section suggests that the effect of fracture fill on the overall modulus of 
the porous and fractured medium depends on how the fluid bulk modulus scales with ݄ୡ as 
݄ୡ → 0. To analyze this effect, we use the following parameterization 
୤ୡܭ  ⁄୥ܭ ൌ  ୡ, (4)݄ܤ
where B is a dimensionless nonzero constant that defines the type of fluid in fractures, liquid, gas or 
intermediate. If B is large enough (e.g., if the fluid is a liquid), ܭ୤ୡ may satisfy the condition (3). In 
this case, taking the limit ݄ୡ → 0 in Eq. (1), we obtain Eq. (2) with fluid properties ܭ୤ and ߟ 
replaced by the corresponding values for the fluid in the pores ܭ୤ୠ and ߟୠ. Conversely, ܤ ൌ 0 
corresponds to dry fractures.  
 
When ݄ୡ → 0, we have ܭୡ → 0, and ߶௖ → 1, and thus ߙୡ → ୡܯ ,1 → ୡܥ ୤ୡ, andܭ → ୡܮ ൅  .୤ୡܭ
Combining these results with the parameterizations (4), and considering cotሺݔሻ ൎ 1 ⁄ݔ  for any 

complex ݔ with |ݔ| ≪ 1 and cot൫√݅ݔ൯ → ݅ for any real ݔ ≫ 1, Eq. (1) in the limit ݄ୡ → 0 can 

be simplified as 
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, (5) 

Eq. (5) is the approximation of Eq. (1) for a porous and fractured medium with an arbitrary fracture 
fill. 
 
Here, we have introduced a dimensionless constant B to define the type of fracture fluids, so that we 
can attain gas and liquid limiting cases. Additionally, we can define low and high frequencies with 
respect to fluid flow between fractures and background. Therefore, in the following section, we 
derive and analyze some limiting cases of fluids and frequencies. 



 
4 Limiting cases 
 
4.1 Fluid limits 
 
4.1.1 Liquid in fractures 
 

If the fluid in the fractures is liquid, then ܤ ≫ 1 and Eq. (5) gives 
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Note that Eq. (6) is exactly the same as Eq. (2). This shows that the result of Brajanovski et al [12] 
is valid not only if both pores and fractures are saturated with the same liquid, but also when the 
two liquids are different. 
 
4.1.2 Dry or nearly dry fractures 
 

When fractures are dry or nearly dry, Eq. (5) cannot, strictly speaking, be used because it was 
derived by assuming that B is nonzero. Instead, we take the limit ܤ → 0, directly in Eq (1). This 
gives 

 
ଵ

஼యయ
ൌ ଵ

஼ౘ
൅ ܼ୒ ൅

൬
ഀౘಾౘ
಴ౘ

൰
మ

ට
೔ഘആౘಾౘಽౘ

಴ౘೖౘ

ಹ
మ
ୡ୭୲൬ට

೔ഘആౘ಴ౘ
ೖౘಾౘಽౘ

ಹ
మ
൰
, (7) 

Incidentally, exactly the same result is obtained by taking the limit ܤ → 0 in Eq. (5). This means 
that Eq. (5) is valid even in the limit of small B. Eq. (7) gives the P-wave modulus for a porous 
medium with dry or gas-filled fractures, and it is quite different from Eq. (5) for liquid case. To 
further analyze the reason for the difference, we derive the limiting cases of low and high 
frequencies next. 
 
4.2. Frequency limits 
 
4.2.1 Low frequencies 
 
In the low-frequency limit ߱ → 0, the cotangent function in Eq. (5) can be replaced by the inverse 
of its argument. Thus, Eq. (5) is reduced to 
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In the low frequency limit, the fluid pressure should be fully equilibrated between pores and 
fractures. Thus in this limit the result must be consistent with the anisotropic Gassmann equations 
for a fractured medium saturated with a single composite fluid [17] with a bulk modulus defined by 
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Eq. (9) is known as the Wood equation, and corresponds to so-called uniform saturation of the 
partial saturation theory [7, 8, 18]. So, if we replace ܭୠ with ܭ୤

∗ in Eq. (5), and then take the low 



frequency limit, we can also get the same expression as given by Eq. (8). 
 
To clarify the physical meaning of the low-frequency Eq. (8) we again consider liquid and dry (or 
gas) cases. For liquid-filled fractures (large B), we have 
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while for ܤ ≪ 1 
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The liquid limit, Eq. (10), corresponds exactly to the low frequency limit of the result of 
Brajanovski et al [12], with only the bulk modulus of the liquid in the pores affecting the overall 
modulus. This result may be understood from Eq. (10), which shows that when the bulk moduli of 
the two fluids are comparable, the effect of the fracture fluid is negligible for its relatively small 
saturation. In turn, Eq. (11) is exactly the modulus of the dry medium [12, 16]. This is because 
when ܭ୤ୡ is very small (much smaller than ݄ୡܭ୤ୠ), Wood Eq. (10) for the effective fluid modulus 
reduces to 
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and thus ܭ୤
∗ → 0, which means that the whole porous and fractured model can be considered as dry 

or nearly dry medium. Physically, this is the result of the fact that at low frequencies, the pore 
pressure is equilibrated between pores and fractures, so when the pressure in fractures is zero, thus 
is also zero in the pores. This is the drained – or dry – limit. 
 
4.2.2 High frequencies 
 
In the high-frequency limit ߱ → ∞, the cotangent function in Eq. (5) can be replaced by ݅. So, we 
can get the expression of P-wave modulus at high frequencies 
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In liquid and gas cases we have 

 
ଵ

஼యయ
ൌ ଵ

஼ౘ
, (14) 

and 

 
ଵ

஼యయ
ൌ ଵ

஼ౘ
൅ ܼ୒, (15) 

respectively. 
 
Note that at high frequencies, the fluid pressure does not have time to equilibrate between pores and 
fractures, and thus they can be considered ‘hydraulically isolated’ [12, 17]. Thus the P-wave 
modulus in this limit corresponds to the modulus of a porous medium with isolated fractures. In the 
liquid case, the modulus given by Eq. (14) is the same as if there were no fractures. This is because 
liquid can stiffen the otherwise very compliant fractures so that P-wave velocities for waves 
propagating parallel and perpendicular to layering are both approximately equal to the modulus of 
the background medium [12, 16, 19]. Conversely, when fractures are dry, the P-wave modulus (15) 
is the same as for a medium with dry isolated fractures (cf Eq. (11)). 
. 



5 Numerical examples 

 
Our main result, Eq. (5), shows that the P-wave modulus is complex-valued and frequency 
dependent regardless of fluid saturation of fractures. This means that waves will have attenuation 
and dispersion. 
 
To explore these effects, we compute the complex phase slowness in the direction normal to the 

fractures ௣ܸ
ିଵ ൌ ඥߩୠ ⁄ଷଷܥ , where ߩୠ ൌ ሺ1 െ ߶ୠሻߩ୥ ൅ ߶ୠߩ୤ୠ is mass density of the fluid-saturated 

background (the effect of fractures on the density can be ignored as their volume fraction is 
negligibly small). This complex phase slowness can be used to evaluate the frequency dependence 
of the P-wave phase velocity and attenuation for waves propagating perpendicular to fractures. The 
P-wave phase speed is the inverse of real part of the complex phase slowness, and the attenuation 
Q.is given by half the ratio of the real part to the imaginary part of the complex phase slowness. 
 
Now, we rewrite Eq. (5) as a function of normalized frequency [12] ߗ  
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where ߗ ൌ ఠுమఎౘெౘ

ସ஼ౘ௞ౘ௅ౘ
 is the normalized frequency and ߜ୒ ൌ

௓ొ௅ౘ
ଵା௓ొ௅ౘ

 is a dimensionless (normalized) 

fracture weakness with values between 0 and 1 [16]. All our calculations are made for a 

water-saturated sandstone using quartz as the grain material (ܭ୥=37GPa, ߩ୥=2.65×103kgm−3). The 

dependency of bulk and shear moduli of the background dry on porosity was assumed to follow the 
empirical model of Krief et al. [20]. 
 
To explore the validity of our approximation, we compare the attenuation and dispersion results 
with the original Norris [14] model, Eq. (1). For the Norris model, we set fracture parameters to 
satisfy the assumptions of the approximation ( ݄ୡ =0.001, ߶ୡ ୒ߜ ,0.999= =0.2, ݇ୡ =200mD, 
୤ୡ=18.1e-6Pa.s). Then, the P-wave speeds and inverse quality factor ܳିଵߟ  are calculated for 
different values of B, and the results are shown on Fig. 1.Alternatively, we could have given an 
input value to ܭ୤ୡ and then computed B using Eq. (4). However, we prefer to evaluate the results 
for different values of the dimensionless constant B. 
 
Fig. 1 shows diepersion and attenuation of P-waves propagating along the symmetry axis (normal to 
fracture plane) for different values of parameter B. Symbols show the values obtained by our 
approximation, Eq. (5), while the curves correspond to the Norris general solution, Eq. (1). We see 
that for the whole range of parameter B, the approximation matches the general model very 
accurately. Curves of dispersion and attenuation have a shape typical for a relaxation phenomenon. 
It is interesting that dispersion and attenuation is significant for both liquid-filled (B=1000) and dry 
(B=0.001) fractures, but is much lower for intermediate values of the parameter B. This somewhat 



surprising observation can be explained as follows. When both pores and fractures are filled with 
liquids, the compression caused by the wave will compress the fractures to much greater extent than 
the background porous material (since fractures are much more compliant than pores), causing the 
fluid to flow from fractures into pores. Conversely, when the pores are saturated with a liquid and 
the fractures are dry (or filled with very compressible gas), the compression will cause the flow 
from pores into fractures (it will be easier to compress gas than deform the fractures). Thus, at some 
intermediate value of the fluid compressibility (or parameter B), there will be no flow at all, and 
hence no dispersion or attenuation.  

 
(a) 

 
(b) 

Figure 1. Frequency dependency of P-wave velocity (a) and inverse quality factor ܳିଵ (b) computed using 

our approximation (17) and Norris model (1) for different values of the parameter B. 
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Figure 2. Dispersion magnitude (difference between high- and low-frequency velocities) as a function for 

parameter B. As B increases, the dispersion first decreases, reaches zero, and then increases again. 

 

Fig. 2 shows the dispersion magnitude (difference between high- and low-frequency velocities) as a 
function for parameter B. As B increases, the dispersion first decreases, reaches zero, and then 
increases again. We also see that the dispersion is almost insensitive to B both for very small and 
very large values of B (corresponding to highly compressible gases and liquids, respectively), but 
quite sensitive to B for values of B in a range around the critical value where dispersion reaches 
zero. This critical value can be obtained by equating low- and high-frequency limits, Eqs (8) and 
(13). This gives 
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The value ܤ∗ given by Eq. (17) corresponds to a critical fracture fluid modulus case, where there 
will be zero dispersion and attenuation in the general porous and fractured model. For the 
parameters used in the numerical example of Fig. 1, Eq. (5) gives ܤ∗ ൎ 0.59. This value is quite 
close to 1.0, and thus we see very small dispersion and attenuation for ܤ ൌ 1. 
 

6 Conclusions 

We have developed a model for wave propagation in a porous medium with aligned fractures such 
that pores and fractures can be filled with different fluids. The model considers the fractured 
medium as a periodic system of alternating layers of two types: thick porous layers representing the 
background, and very thin and highly compliant porous layers representing fractures. The results 
show that in the low-frequency limit the elastic properties of such a medium can be described by 
Gassmann equation with a composite fluid, whose bulk modulus is a harmonic (Wood) average of 
the moduli of the two fluids. At higher frequencies, the model predicts significant dispersion and 
attenuation. The dispersion and attenuation are the highest when both pores and fractures are 
saturated with liquids. The dispersion and attenuation are also significant (but somewhat weaker) 
when the pores are filled with a liquid but fractures are dry or filled with a highly compressible gas. 
However, there is an intermediate case where no dispersion is observed. This can be explained by 
observing that when the medium is uniformly saturated with a liquid, wave-induced compression 
causes flow from fractures into pores due to high compliance of the fractures. Conversely, when 
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pores are filled with a liquid but fractures are filled with gas, flow will occur from pores into 
fractures due to high compressibility of gas. Thus an intermediate case exists where there is no flow 
and hence no dispersion or attenuation. 
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