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Abstract  An impermeable crack in a piezoelectric strip at arbitrary position under in-plane mechanical and 
electric impact loadings is considered. Due to the asymmetry of the geometry, this crack problem is a 
mixed-mode one. Fourier and Laplace transforms are applied to reduce the mixed boundary value problem of 
the crack to a system of singular integral equations. The asymptotic fields near the crack tip are obtained in 
explicit form and hoop and shear stress intensity factors are defined. Laplace inversion transforms are 
applied to get the dynamic hoop stress intensity factors. The crack kinking phenomena is investigated by 
applying the criterion of maximum hoop stress intensity factors. Numerical results show that the geometry of 
the cracked strip and the electric loadings have effects on the singular field distributions around the crack tip, 
and the hoop stress intensity factors are influenced by the material parameters, the electric loading and the 
geometric size ratios. 
 
Keywords  Mixed-mode crack, Piezoelectric Strip, Singular integral equations, Crack kinking; Hoop stress 
intensity factor 
 
1. Introduction 
 
   Piezoelectric materials can be made into various functional devices, such as sensors and 
actuators, which are widely used in modern industrial fields. Due to the brittleness and low fracture 
toughness of piezoelectric materials, dynamic fracture analysis of piezoelectric materials has drawn 
considerable attentions. Dynamic anti-plane crack propagation in piezoelectric materials has been 
studied by Li and Mataga [1, 2]. Shindo et al. [3] obtained dynamic stress intensity factors of a 
cracked piezoelectric medium in a uniform dielectric field. The problem of a Griffith crack moving 
along the interface of two dissimilar piezoelectric materials was solved by Chen et al. [4] using the 
integral transform technique and it is shown that the stress and electric displacement are dependent 
on the speed of the crack and the material coefficients. Chen and Yu [5] investigated a semi-infinite 
crack in a piezoelectric medium subjected to antiplane impact loading. Mode-I transient response of 
a piezoelectric strip containing a center-situated crack under in-plane mechanical and electric 
impacts was investigated by Wang and Yu [6], and it was found that the intrinsic 
mechanical-electrical coupling plays a significant role in the dynamic fracture response of in-plane 
problems. 

   Crack kinking is an important phenomenon in the fracture of piezoelectric materials in response 
to electro-mechanical loading. Zhu and Yang [7] modeled the crack kinking in a piezoelectric solid 
by continuous distribution of edge dislocations and electric dipoles, and the solution was formulated 
via the Stroh formalism. The mixed-mode crack initiation in piezoelectric strip was studied by 
Wang and Noda [8] using the method of Fourier transform and singular integral equations. Hu and 
Zhong [9] considered a moving mode-III crack in a functionally graded piezoelectric strip. They 
found that the gradient of the material properties can affect the magnitudes of the stress intensity 
factors, and a high crack moving velocity can change the propagation orientation of the crack. 
   In this paper, the mixed-mode crack in a piezoelectric strip under in-plane electrical and 
mechanical impact loadings is studied. Fourier transform is employed to reduce the mixed boundary 
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value problem of the crack to solving a system of singular integral equations. The asymptotic fields 
near the crack tip are obtained in an explicit form and the hoop and shear stress intensity factors are 
then determined. The crack kinking phenomenon is investigated by applying the maximum hoop 
stress intensity factor criterion. The coupled electro-mechanical effects on the crack-tip fields are 
investigated and the influence of the geometric feature of the strip on the crack kinking is discussed. 
 
2. Problem statement and method of solution 
 
   Consider a transversely isotropic, linear piezoelectric material and denote the rectangular 
coordinates of a point by ),,( zyx . The constitutive equations can be written as 
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where zx uu ,  are components of the displacement vector and φ  is the electric potential, 

44331311 ,,, CCCC  are elastic constants, 3115 ,ee  are piezoelectric constants, and 3311 ,λλ  are 

dielectric permittivities, ijσ  and iD  ( zxji ,, = ) are components of stress and electric 

displacement, respectively.  

 

 

 
 
 
 
 
 
 
 
 
 

Figure 1. A cracked piezoelectric strip under in-plane mechanical and electric impact loadings 
 

   Studied in this paper is a Griffith crack of length c2  in a piezoelectric strip of width 21 hh + , 

with the poling direction perpendicular to the crack plane, as shown in Fig. 1. Uniform impact 

D0H(t) 

P0H(t)

x 

h 1
 

h 2
 

2c

z 



13th International Conference on Fracture 
June 16–21, 2013, Beijing, China 

-3- 
 

normal stress H(t)0P and impact electric displacement H(t)0D  are applied on the edges of the strip, 

where H(t)  is the Heaviside step function. As shown in Fig. 1, symmetry conditions are used to 

allow for consideration of only the region ( 12,0 hzhx ≤≤−≥ ). In this paper the impermeable 

electric boundary condition on the crack faces is employed.  

   Application of Laplace transform leads to the governing equations in the Laplace domain as 
follows: 
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where p  is the Laplace transform parameter and the superscript * denotes the quantities in the 
Laplace transform domain. 

The corresponding boundary conditions and continuity conditions in the Laplace domain are: 
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Fourier transform is applied to Eq. (2) to obtain the solutions as 
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where  )2,1( =Τ jj  are constants and jj ba ,  )3,2,1( =j  are known functions defined in 

Appendix A,  the superscripts )2(),1()( =n
 
denote the fields quantities in the upper ( 10 hy ≤≤ ) 

and lower ( 02 ≤≤− yh ) parts of the piezoelectric strip, respectively, and ),(),,( )()( pBpA n
j

n
j ξξ , 

)3,2,1;2,1( == jn  are unknowns to be determined; jγ  ( 31−=j ) are the roots of the following 

characteristic equation: 
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   Note that the sixth-order characteristic equation (10) has six roots which occur in pairs with the 
same magnitude but opposite signs, and for complex roots, they always appear in conjugate pairs. In 

Eqs. (7-9), the roots jγ  ( 31−=j ) with 0)Re( >jγ  are chosen by requiring a positive internal 

energy for the system to be in a steady state, as stated by Suo et al. [10]. 
   The stress and electric displacement components can be expressed as follows  
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where 2311130 TeTC +=σ  and the coefficients jjjj mqgf ,,,  are defined in Appendix A. By 

applying the boundary conditions (3) and (4), the unknown functions ),,()1( pBj ξ
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where ),,( 1
)1( phRji ξ , 

 
),,,( 21 phhTji ξ  and ),,,( 21 phhQ ji ξ  are known functions. Introduce the 

auxiliary functions )31(),( −=Φ ipxi  such that 
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   By applying the solutions (7-9) and using the Fourier inverse transform, the independent 
unknowns can be obtained as 



13th International Conference on Fracture 
June 16–21, 2013, Beijing, China 

-5- 
 

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

Φ

Φ

Φ

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

∫
∫
∫

c

c

c

dssps

dssps

dssps

pYpYpY
pYpYpY
pYpYpY

pA
pA
pA

0 3

0 2

0 1

333231

232221

131211

)1(
3

)1(
2

)1(
1

)sin(),(

)sin(),(

)cos(),(

),(),(),(
),(),(),(
),(),(),(

2

),(
),(
),(

ξ

ξ

ξ

ξξξ
ξξξ
ξξξ

πξ
ξ
ξ
ξ

       (17) 

where )31,(),( −=jipYij ξ  are known functions. Satisfaction of the mixed boundary conditions 
(5) and (6) on the crack face plane leads to the simultaneous singular integral equations 
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where 0201 , DTPT == , ),(),( pcsps ii Φ=Ψ , )3,2,1(),,( =ipxsijκ  are known  kernel 

functions, the constants 0
ijU  are defined as ),(lim0 pUU ijij ξ
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=  and ),( pUij ξ  are known 

functions. The functions ( )31),( −=Ψ ipsi  satisfy the single-valuedness condition: 
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where ( )31),( −=ipsH i  are unknowns to be solved. 

   Use the Lobatto-Chebyshev method [11], singular integral equations (18) can be reduced to the 
following algebraic equations:  
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where, 
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3. Asymptotic fields near the crack tip 
 

   Once functions ),( psH j  ( 3,2,1=j ) are obtained from solving the algebraic equations (21-23), 

following the procedure in Li and Lee [12], the asymptotic expressions of the electro-elastic fields 
near the crack tip can be determined by introducing a polar coordinate system ( θ,r ) with the origin 
at the right crack tip, as follows 
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   The hoop and shear stresses at an angle θ  near the right tip of the crack are obtained from the 
following relations in terms of the polar coordinates ),( θr  
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    Define the hoop stress intensity factor and shear stress intensity factor associated with the 
hoop and shear stresses at an arbitrary angle θ  as [13] 
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    Substituting Eqs. (26) into (27), the hoop and shear stress intensity factors in the Laplace 
domain can be obtained as: 
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where  πθ ≤≤0  when 1=n  for the upper part and 0≤≤− θπ  when 2=n  for the lower part 

of the cracked layer, respectively; the angular functions )(1 θjΛ  and )(2 θjΛ  )3,2,1( =j  are 

given in the following form 
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in which the constants 00000 ,,,, jijjjj Yfqg γ  are defined in Appendix A. 

    Note that by setting the angle θ  equal to zero and using the relations in Eqs. (30), the 
common expressions for the Mode-I and Mode-II stress intensity factors can be obtained. The 
dynamic hoop and shear stress intensity factors can be obtained by performing the Laplace inverse 
transform to Eqs. (28) and (29) as 
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where ""Br  stands for the Bromwich path of integration. Different criteria have been proposed to 
predict the direction of crack branching [14]. Here we use the maximum hoop stress intensity factor 
criterion to predict crack kinking. 
 
4. Numerical results and discussions 
 
   To study the effect of electro-elastic interaction on the stress field near the crack tip, the electric 

loading parameter ( )033033 PDeLD λ=  is introduced. The material constants of PCM-80 [15] are 

used in the following numerical calculation: 
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   The variation of the normalized dynamic hoop stress intensity factors (HSIFs) 
cP
tK

0

)(θθ  with 

normalized time ctVs  at different angles θ  are displayed in Fig. 2. The shear wave velocity is 

defined as ρ
λ11

2
15

44
e

cVs += . Without loss of generality, the geometric size of the strip is taken to 

be 5,1 21 == chch , and the applied electric loading parameter 5.0+=DL . Fig. 2 shows that the 

HSIFs increase as time increases, and reach their peak values at about 5.3=ctVs , and then 
decrease and oscillate about their static values, until when ∞→ctVs , HSIFs reduce to the static 
values. The peak values of the HSIF at 20=θ  degrees are bigger than that of 0=θ  degrees, 
which means that the crack tends to deviate from the original crack plane, provided that the material 
has the same fracture toughness in every direction. 
   Fig. 3 shows the variation of peak values of the dynamic hoop stress intensity factors versus 

angles θ  when 5.0+=DL . For the case 21 hh ≠ , the maximum value of the HSIFs appears at an 

angle different from the original crack plane, which implies that the crack may kink in this 

particular direction. When 5,1 21 == chch , the crack kinks at about 20+=θ  degrees, and in 

another case 1,5 21 == chch , the crack kinks at about 20−=θ  degrees. It is evident that the 
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possible crack kinking direction is oriented toward the thinner side of the strip. This is in agreement 
with [16] and [8] for the static mixed mode crack problem. It also agrees with the physical 
phenomenon that surface cracking is more likely to happen, due to the mechanism the crack kinks 
into the direction toward the surface of the body. The maximum value of the HSIFs appear at the 

angle 0=θ  in the symmetric case when 21 hh = , which implies that the crack may propagate 

along the extension of original crack plane. 

 
 
 
 
 
 

 

 

 

 

Figure 2. Dynamic hoop stress intensity factors for different angles  

when 1,5.0 1 =+= chLD

 

and 52 =ch  

 
 
 

 

 

 

 

 

Figure 3. Maximum values of the normalized hoop stress intensity factors  

versus angles when 5.0+=DL  
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   Fig. 4 shows the effect of electric loading on the variation of normalized dynamic HSIFs at the 
angle 20=θ  degrees. The electric loading parameter DL  affects the initial value and the peak 
value of the dynamic HSIFs. At the very beginning, a positive electric load leads to a lower initial 
value of the HSIF than negative electric load, whilst the peak value of the dynamic HSIFs induced 
by the positive electric load is higher than that for the negative electric load. 
 
 

 

 

 

 

 

 

Figure 4. Dynamic hoop stress intensity factors for different electric loadings DL   

when 20=θ  degrees and chh 42 12 ==

  

5. Concluding remarks 
 
   An impermeable crack in a piezoelectric strip under in-plane dynamic mechanical and electric 
loadings is studied. Fourier transforms are applied to reduce the mixed boundary value problem of 
the crack to dual integral equations, which are further expressed in terms of singular integral 
equations. Asymptotic fields near the crack tip are obtained in an explicit form and the 
corresponding field intensity factors are determined. The crack kinking phenomenon is investigated 
by applying the maximum hoop stress intensity factor criterion. Numerical results show that the 
geometry of the strip and the electric loading dominate the singular field distribution around the 
crack tip, and the hoop stress intensity factors are controlled by the material parameters, the electric 
loadings and the geometric size ratios. 
 

Appendix A 
 

    The constants in Eqs. (14) and (15) are defined as 
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