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Abstract An impermeable crack in a piezoelectric strip at arbitrary position under in-plane mechanical and
electric impact loadings is considered. Due to the asymmetry of the geometry, this crack problem is a
mixed-mode one. Fourier and Laplace transforms are applied to reduce the mixed boundary value problem of
the crack to a system of singular integral equations. The asymptotic fields near the crack tip are obtained in
explicit form and hoop and shear stress intensity factors are defined. Laplace inversion transforms are
applied to get the dynamic hoop stress intensity factors. The crack kinking phenomena is investigated by
applying the criterion of maximum hoop stress intensity factors. Numerical results show that the geometry of
the cracked strip and the electric loadings have effects on the singular field distributions around the crack tip,
and the hoop stress intensity factors are influenced by the material parameters, the electric loading and the
geometric size ratios.

Keywords Mixed-mode crack, Piezoelectric Strip, Singular integral equations, Crack kinking; Hoop stress
intensity factor

1. Introduction

Piezoelectric materials can be made into various functional devices, such as sensors and
actuators, which are widely used in modern industrial fields. Due to the brittleness and low fracture
toughness of piezoelectric materials, dynamic fracture analysis of piezoelectric materials has drawn
considerable attentions. Dynamic anti-plane crack propagation in piezoelectric materials has been
studied by Li and Mataga [1, 2]. Shindo et al. [3] obtained dynamic stress intensity factors of a
cracked piezoelectric medium in a uniform dielectric field. The problem of a Griffith crack moving
along the interface of two dissimilar piezoelectric materials was solved by Chen et al. [4] using the
integral transform technique and it is shown that the stress and electric displacement are dependent
on the speed of the crack and the material coefficients. Chen and Yu [5] investigated a semi-infinite
crack in a piezoelectric medium subjected to antiplane impact loading. Mode-I transient response of
a piezoelectric strip containing a center-situated crack under in-plane mechanical and electric
impacts was investigated by Wang and Yu [6], and it was found that the intrinsic
mechanical-electrical coupling plays a significant role in the dynamic fracture response of in-plane
problems.

Crack kinking is an important phenomenon in the fracture of piezoelectric materials in response
to electro-mechanical loading. Zhu and Yang [7] modeled the crack kinking in a piezoelectric solid
by continuous distribution of edge dislocations and electric dipoles, and the solution was formulated
via the Stroh formalism. The mixed-mode crack initiation in piezoelectric strip was studied by
Wang and Noda [8] using the method of Fourier transform and singular integral equations. Hu and
Zhong [9] considered a moving mode-I1I crack in a functionally graded piezoelectric strip. They
found that the gradient of the material properties can affect the magnitudes of the stress intensity
factors, and a high crack moving velocity can change the propagation orientation of the crack.

In this paper, the mixed-mode crack in a piezoelectric strip under in-plane electrical and
mechanical impact loadings is studied. Fourier transform is employed to reduce the mixed boundary
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value problem of the crack to solving a system of singular integral equations. The asymptotic fields
near the crack tip are obtained in an explicit form and the hoop and shear stress intensity factors are
then determined. The crack kinking phenomenon is investigated by applying the maximum hoop
stress intensity factor criterion. The coupled electro-mechanical effects on the crack-tip fields are
investigated and the influence of the geometric feature of the strip on the crack kinking is discussed.

2. Problem statement and method of solution

Consider a transversely isotropic, linear piezoelectric material and denote the rectangular
coordinates of a point by (x,y,z) . The constitutive equations can be written as

O'xx Cy Cy O ou, /ox 0 ey 00
6,r=|Cs Ciy O du, /oz +] 0 e 046
o, 0 0 C,]|lou,/oz+0u,/ox] |es O M
au, /ox
{DX} _[ 0 O els} ou, oz [ﬂu 0 Ha;/ﬁ/ax}
D,[ |e, ey O : o A, |log/o
? s ou, /oz +du, /ox |04/

where u ,u, are components of the displacement vector and ¢ is the electric potential,
C,.C;.C,;,C,, are elastic constants, e;,e; are piezoelectric constants, and A,,4,, are

dielectric permittivities, o; and D; (1i,j=x,z) are components of stress and electric

displacement, respectively.
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Figure 1. A cracked piezoelectric strip under in-plane mechanical and electric impact loadings

Studied in this paper is a Griffith crack of length 2c in a piezoelectric strip of width h, +h,,
with the poling direction perpendicular to the crack plane, as shown in Fig. 1. Uniform impact
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normal stress P,H(t) and impact electric displacement D H(t) are applied on the edges of the strip,
where H(t) is the Heaviside step function. As shown in Fig. 1, symmetry conditions are used to
allow for consideration of only the region (x>0, —h, <z <h,). In this paper the impermeable

electric boundary condition on the crack faces is employed.

Application of Laplace transform leads to the governing equations in the Laplace domain as
follows:

*

Cpally o + C44u:,zz +(Cip + C44)u:,xz +(ey + e15)¢:<z = pp’u;
(Cp + C44)u:,xz + C44u:,xx + C33u:,zz + e15¢:<x + 633¢;z = pp’u, 2)
(e31 + els)u:,xz + elsuz,xx + e33u:,zz - /111¢:<x _/133¢,:z =0

where p is the Laplace transform parameter and the superscript * denotes the quantities in the

Laplace transform domain.
The corresponding boundary conditions and continuity conditions in the Laplace domain are:

az*:(x,hl, p) = a (x=h,, p)=PR,/p, o, (XN, p)=0,(X~h,, p)=0 (x20) @)
D, (x,h,, p) = D; (x,~h,, p) = Dy /p
0, (x0%,p)=0,(x07,p), 0,(x,0",p)=0,(x0",p)
D, (x,0%, p) = D, (x,07, p)
0,(x0,p)=0, o,(x0,p)=0, D,(x,0,p)=0 (0<x<c) (5)
u, (x,0, p) =u; (x,07, p), U (x0",p)=u,(x0,p)

¢ (x0",p)=¢ (x0,p)
Fourier transform is applied to Eq. (2) to obtain the solutions as

(x>0) 4)
(x>c) (6)

U2 (0 2,0) == [ 2, [A” € p)sinh(y,&2) + BV (¢, p)cosh(y, &) fsin(gde (7)
u" (2, p) =) [ A € p)cosh(y &) + BY (&, p)sinh(y,¢2)]cos(&dé +Tiz/p (8)

¢ (x,2,0) ==Y [ b;[A (&, p)cosh(y,&2) + B (&, p)sinn(y ;) Jeos(&)d¢ +T,2/p (9)

where T, (j=12) are constants and a;, b, (j=123) are known functions defined in

i
Appendix A, the superscripts (n) = (1), (2) denote the fields quantities in the upper (0<y <h,)
and lower (—h, <y <0) parts of the piezoelectric strip, respectively, and A" (&, p), B{"(&, p),

(n=12; j=123) are unknowns to be determined; y; (j=1-3) are the roots of the following

characteristic equation:
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Cu+ ppz/fz - C447/2 (C13 +Cu)y (e31 + e15)7/
(Cis +Cu)y C337’2 _sz/é:z —Cu 9337/2 —€5 (=0 (10)
(€5 +€35)7 6337/2 — €5 Ay - 13372

Note that the sixth-order characteristic equation (10) has six roots which occur in pairs with the
same magnitude but opposite signs, and for complex roots, they always appear in conjugate pairs. In

Egs. (7-9), the roots y; (j=1-3) with Re(y;)>0 are chosen by requiring a positive internal

energy for the system to be in a steady state, as stated by Suo et al. [10].
The stress and electric displacement components can be expressed as follows

ou = 2 [ &,[A” (&, p)cosh(y &) + BN (£, p)sinh(y, &) Jsin(&)dé (11)
o =PRy/p- 2 [ a9, (A" (&, p)sinh(y,&) + BI" (&, p)cosh(y,&)]eos(&)dé  (12)
oy =0y/P- Z [, [A" (&, p)sinh(y,&2) + B (£, p)cosh(y &) Jcos(@9ds (13)

D} =Dy/p -3 [} ém; A (£, p)sinh(y,&2) + B{" (¢, p) cosh(y, &) |oos(&x)de  (14)

where o, =C,T, +e,T, and the coefficients f;, g;,q;,m; are defined in Appendix A. By
applying the boundary conditions (3) and (4), the unknown functions B{" (&, p), A (¢, p),

B{”(&,p) (j=1-3) can be expressed by the independent unknowns AY(&, p) (j=1-3) as

B{" (£, p) = ZR(”(e‘ h, P)AY (&, p). BP(S,p) = ZQ,.(§ 1, PYAP (S, p)
(15)

AEZ) (&, p)= ZTji (&,hy,hy, p)Ai(l) (&, p)

where RY (&0, p), T, (& h,h,, p) and Q; (& hy,h,, p) are known functions. Introduce the
auxiliary functions @, (x, p) (i=1-3) such that
@, (x, p) u,? (x,0%, p) —u,®(x,07, p)
@, (x ) p =— U7 (0", ) ~u;? (x 0", p) (16)
@, (X, p) ¢ ?(x,07,p) =4 (x,0%, p)

By applying the solutions (7-9) and using the Fourier inverse transform, the independent
unknowns can be obtained as
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AR [YaleP) Yale) Yalép) Jy @.(s. p) cos(se)ds
AY(Ep) (== Yal6iP) Ya6iP) YilS:) [ @.(s, p)sin(s&)ds (17)
AP (£, p)

Yau (S p) Yo (S, P) Ya(S, P) '[Cq)3(3, p)sin(sé&)ds

where Y; (&, p) (i, j=1-3) are known functions. Satisfaction of the mixed boundary conditions
(5) and (6) on the crack face plane leads to the simultaneous singular integral equations

1 s | u?
J._l{’(ml(sv X, P)¥i (s, p) + Z{

moy Ko (s, X, p)}‘{’j (s, p)}ds =
fl{ :J_gls + Ky (S X, p)}lﬁ (s, p)+ ZS:K3J- (s, X, P)¥; (s, p)}ds =0

-7l

(m=12) (18)

S—X
i=

where T, =P, T,=D, , W¥(s,p)=@;(cs,p) , x;(s,%p) (i=123) are known  kernel
functions, the constants Ui‘j) are defined as Ui?:gmuij(f, p) and U;(& p) are known

functions. The functions ¥, (s, p) (i =1-3) satisfy the single-valuedness condition:

j_ll\yi (5,p)ds =0, (i=1-3) (19)
and W, (s, p) may be expressed as
¥, (s, p) = H, (s, p)/v1-5° (20)

where H, (s, p) (i=1-3) are unknowns to be solved.

Use the Lobatto-Chebyshev method [11], singular integral equations (18) can be reduced to the
following algebraic equations:

ipﬁ{[’fml(xkvsia p)]Hl(si1 p)"’i{ Umj +ij(xklsiv p)}Hj(si! p)} = _7;Tm (m=12) (21)

=219 T M

ia{ Usi s, pﬂHl(si, o)+ 3l 559K, p>} 0 @

X, =S

iAHj(Si. p)=0 (j=123) (23)

where,
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S, :cos[%} (i=12,..,n); X =cos{%} (k=12,....,n-1) o0
T . . B
Aizz(n—_1)1 (i=1n);, A=

T

(n-1)°

(i =2,3,...n—1)

3. Asymptotic fields near the crack tip

Once functions H (s, p) (j=12,3) are obtained from solving the algebraic equations (21-23),

following the procedure in Li and Lee [12], the asymptotic expressions of the electro-elastic fields
near the crack tip can be determined by introducing a polar coordinate system (r, &) with the origin

at the right crack tip, as follows
r=+(x-c)>+z°, @=tan*[z/(x-c)] (25)
The hoop and shear stresses at an angle & near the right tip of the crack are obtained from the
following relations in terms of the polar coordinates (r,8)
0, (r,0,p)=0,(r,0,p)cos’ 8+ o, (r,0, p)sin® o, (r,6, p)sin 20
oy (1,6, p) =sin 260[o, (1,6, p) — o (1,6, p)])/2+ o, (.6, p) cos 20

Define the hoop stress intensity factor and shear stress intensity factor associated with the
hoop and shear stresses at an arbitrary angle & as [13]

Koo = lm(ﬁaga )' Keo = !Tg(ﬁa:e) (27)

Substituting Egs. (26) into (27), the hoop and shear stress intensity factors in the Laplace
domain can be obtained as:

(26)

3
(¢° cos? 0+ q”sin’ «9)[(—1)” H, (L p)YSAL (6)+ Y H, (L p)YCA,, (9)}
k=2

K;@ = \/623: S (28)
- £ 0 sin 2‘9["'1(1, PIY3fz; (0) = (D" 2 H (L YA, (9)}
3 (9; - qé)sin 2‘9{(_1)“ H, (L p)YSA,;(6) +Zgl H, (@ p)Y A, (‘9)}
Ky = \/EZ ) “

j=1

3
+ f} cos 20{H1(1, P)Y Ao (0) = (-1)" X H (L p)Y Ay, (6’)}

k=2
where 0<6# <7z when n=1 forthe upperpartand —z <€ <0 when n=2 forthe lower part
of the cracked layer, respectively; the angular functions A,;(#) and A,;(0) (j=1273) are

given in the following form

Ay (0)= \/ Jeos*(0) + i sin@)f +(-1)" cos0) (k =1,2) (30)

2[0032(0) + [7? sin(e)]ZJ
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in which the constants g?%,q%, f2,Y.?,»° are defined in Appendix A.
J J J 1) J

Note that by setting the angle & equal to zero and using the relations in Eqgs. (30), the
common expressions for the Mode-I and Mode-II stress intensity factors can be obtained. The
dynamic hoop and shear stress intensity factors can be obtained by performing the Laplace inverse
transform to Eqgs. (28) and (29) as

1. 1.
Kan(0.0) =, K3y (0, p)exp(pt)dp, K,,(0,1) =—— |, K.,(6, p)exp(pt)dp (31)

where "Br" stands for the Bromwich path of integration. Different criteria have been proposed to
predict the direction of crack branching [14]. Here we use the maximum hoop stress intensity factor
criterion to predict crack kinking.

4. Numerical results and discussions

To study the effect of electro-elastic interaction on the stress field near the crack tip, the electric
loading parameter L =e,,D,/(45;P,) is introduced. The material constants of PCM-80 [15] are
used in the following numerical calculation:

C,, =17.0x10"°(N/m?), C, =11.5x10"(N/m?), C,, =16.5x10"(N/m?)
C,, =3.05x10"(N/m?), e, =13.7 (C/m?), e, =-5.99 (C/m?),

32
e, =15.6 (C/m?), A, =95.2x10™°(C?/Nm?), A,, =68.4x107°(C?/Nm?) (32
p =5.5x10°(Kg/m?)
The variation of the normalized dynamic hoop stress intensity factors (HSIFs) P;L\/(p with
C
0

normalized time tV,/c at different angles @ are displayed in Fig. 2. The shear wave velocity is

2
defined as V, = /044 +25/p . Without loss of generality, the geometric size of the strip is taken to
1

be h,/c=1 h,/c=5, and the applied electric loading parameter L, =+0.5. Fig. 2 shows that the
HSIFs increase as time increases, and reach their peak values at about tV,/c=3.5, and then

decrease and oscillate about their static values, until when tV,/c — oo, HSIFs reduce to the static

values. The peak values of the HSIF at & =20 degrees are bigger than that of 6 =0 degrees,
which means that the crack tends to deviate from the original crack plane, provided that the material
has the same fracture toughness in every direction.

Fig. 3 shows the variation of peak values of the dynamic hoop stress intensity factors versus

angles & when L, =+0.5. For the case h, #h,, the maximum value of the HSIFs appears at an

angle different from the original crack plane, which implies that the crack may kink in this

particular direction. When h,/c=1, h,/c =5, the crack kinks at about & =+20 degrees, and in

another case h,/c=5, h,/c =1, the crack kinks at about & =-20 degrees. It is evident that the
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possible crack kinking direction is oriented toward the thinner side of the strip. This is in agreement
with [16] and [8] for the static mixed mode crack problem. It also agrees with the physical
phenomenon that surface cracking is more likely to happen, due to the mechanism the crack kinks
into the direction toward the surface of the body. The maximum value of the HSIFs appear at the

angle € =0 in the symmetric case when h, =h,, which implies that the crack may propagate

along the extension of original crack plane.

Kee(t)

Figure 2. Dynamic hoop stress intensity factors for different angles

when L, =+0.5, h;/c=1 and h,/c=5
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Figure 3. Maximum values of the normalized hoop stress intensity factors

versus angleswhen L, =+0.5
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Fig. 4 shows the effect of electric loading on the variation of normalized dynamic HSIFs at the
angle =20 degrees. The electric loading parameter L, affects the initial value and the peak
value of the dynamic HSIFs. At the very beginning, a positive electric load leads to a lower initial
value of the HSIF than negative electric load, whilst the peak value of the dynamic HSIFs induced
by the positive electric load is higher than that for the negative electric load.

tv /e

Figure 4. Dynamic hoop stress intensity factors for different electric loadings L

when & =20 degreesand h, =2h, =4c

5. Concluding remarks

An impermeable crack in a piezoelectric strip under in-plane dynamic mechanical and electric
loadings is studied. Fourier transforms are applied to reduce the mixed boundary value problem of
the crack to dual integral equations, which are further expressed in terms of singular integral
equations. Asymptotic fields near the crack tip are obtained in an explicit form and the
corresponding field intensity factors are determined. The crack kinking phenomenon is investigated
by applying the maximum hoop stress intensity factor criterion. Numerical results show that the
geometry of the strip and the electric loading dominate the singular field distribution around the
crack tip, and the hoop stress intensity factors are controlled by the material parameters, the electric
loadings and the geometric size ratios.

Appendix A

The constants in Eqs. (14) and (15) are defined as
T, = (/133 I:)0 +€5 Do )/(C33/133 + e§3)7 T, = (e33 Po - Css Do)/(cssﬂss + e§3) (A1)

1
{al}: Cll+pp2/§2_c447j2 €3 + 655 { C+Cy } (A2)
b (C13+C44)7j2 93371'2 — €55 C337/j2 —C44—pp2/§2

]
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fj :C44(aj7’j2 +1)_e15bj’ 9= (C13aj +e33bj _C33)7’j

(A3)
q; = (Cllaj +e31bj _C13)7j: m; = (e3laj _/133bj _e33)7j
g? :!Ln;gj’ qjo :!mqj1 ij :!Lrg fj’ YijO = !tiL?chj (é:’ p)l 7/10 :‘!fil;gj/j(é:’ p) (A4)
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