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Abstract  The modeling of subcritical growth of inclined crack under creep condition is considered. In the 

first part of this paper the stress state near the tip of inclined crack for power creep law in the cases of plane 

stress and plane strain is calculated. To calculate the stress state near the tip of an inclined crack the Airy’s 

stress function is used. The resulting nonlinear fourth order differential equation is formulated as two-point 

boundary value problem and is solved by shooting and Newton's methods.  

 

The modeling of creep crack growth is based on Rabotnov-Kachanov damage theory and the criterion of crack 

growth ω=1 at the distance d from the crack tip, calculated for equivalent or maximum stress. The crack 

growth rate and the crack trajectory are calculated both for plane stress and plane strain and for n = 1, 3, 5, 7 

and considered in the second part of this paper. 

 

Keywords  inclined crack, creep, stress distribution.  

 

1. Introduction 
 

Let us consider an infinite plate of a nonlinear elastic-creep material with a crack of the length 2a, 

located at the angle α to the axis x and loaded by the stress   along the axis y (Figure 1). It is 

required to determine the stress state near the tip of inclined crack for the plane stress and the plane 

strain conditions. It should be noted that the problem of uniaxial tension of inclined crack is statically 

equivalent to the mixed tensile and shear loading by the stresses  2cos  and  sincos , 

respectively (Fig. 1).  

 

Figure 1. The geometry of the inclined crack. 
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2. Statement of the problem  
 

2.1. Main equations 

 

Let us consider the polar coordinate system (r, φ) associated with the tip of inclined crack (Fig. 1). 

The equilibrium equations and the Cauchy relations in the polar coordinate system for the plane strain 

or stress conditions are [1-3]:  
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The constitutive equations for an incompressible material with a power creep law have the following 

form [1-2]:  

 ij

n

eij sB 1)23(    (3) 

where ij  is the strain rate tensor, ijkkijijs  )31(  is the deviator of ij  stress tensor, 

ijije ss)23(  is the equivalent stress, B  is the material constant, n is the index of nonlinearity.  

The equivalent stress е  for the plane stress and the plane strain is calculated as 

 222 3   rrrrre  , 22 3))(43(   rrre    (4) 

 

The strain compatibility equation in polar coordinates, resulting from Eq. (2), has the following form 

[1-3]: 
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Taking into account Eq. (1), Eq. (3) and Eq. (4), the strain compatibility Eq. (5) can be rewritten in the 

stress terms for the plane stress (a) and the plane stain (b) conditions as the follows: 
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Thus, the main equations in stress terms for the power law constitutive equation (Eq. 4) are the 

equilibrium equations (Eq. 1) and the strain compatibility condition for the plane stress (Eq. 6a) or the 

plane stain (Eq. 6b), accordingly.  

 

2.2. Airy's stress function  

 

To solve the system of Eq. (1) and Eq. (6a) or Eq. (1) and Eq. (6b) it is often used the Airy's stress 

function F(r, φ), defined as follows [1-3]:  
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Substituting Eq. (7) in the strain compatibility equation for plane stress and plane strain conditions 

(Eq. 6a or Eq. 6b, accordingly), we obtain the following nonlinear differential equation for the Airy’s 

stress function F(r, φ):  
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2.3. Near crack tip asymptotic 

 

In the polar coordinate system the Airy's stress function F(r, φ) near a crack tip has the following 

asymptotic representation [4-6]:  

 )(),(   fKrrF  , (9) 
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path-independent contour integral (usually named as Cherepanov-Rice-integral or J-integral) and  

   









 d
u

us
u

ususus
n

s
n

n
I rr

r
rrrrrr

n

en 






































































 sin

1

1

1
cos 1   

is the dimensionless constant. 

 

Taking into account Eq. (7) and the asymptotic behavior (Eq. 9) of Airy's stress function F(r, φ), the 

stress tensor ij  and the equivalent stress е  near a crack tip can be written as follows: 

 )())(( 2222  
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where )(es  is the dimensionless function, written for the plane stress and the plane strain 

conditions, respectively, as the follows: 
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Compatibility equations (8a) and (8b) for the asymptotic of Airy's stress function F(r, φ) (Eq. 9) can 

be rewritten as non-linear ordinary differential equation for the unknown function )(f  [7-8]:  
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Thus, the equation (10a) or (10b) is a non-linear differential equation of fourth order for unknown 

asymptotic Airy's stress function f(φ). To solve this equation and to determine the stress field near a 

crack tip it is necessary to add four boundary conditions. 
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2.4. Boundary conditions 

 

The first two boundary conditions are the conditions of the free crack surfaces, i.e. 0   r
 at 

φ=π. Hence, two boundary conditions for asymptotic Airy's stress function f(φ) are the follows: 

 

 0 ddff , φ=π. (11) 

 

For mode I or mode II crack tip two additional boundary conditions are the symmetry conditions, i.e. 

0  rrr
 (mode I) or 0   r

 (mode II) at φ=0. In this case two additional 

boundary conditions for asymptotic Airy's stress function f(φ) are the follows: 

 

033   dfdddf , φ=0 (mode I) or 022  dfdf , φ=0 (mode II).            (12) 

 

Thus, for Eq. (10a) or Eq. (10b) with boundary conditions (Eq. 11) and (Eq. 12) it is obtained 

two-point boundary value problem for asymptotic Airy's stress function f(φ). This problem can be 

solved by shooting method [9], when adding to symmetry conditions (Eq. 12) two additional 

boundary conditions  

2

22

1, cdfdcf    (mode I) or 
2

33

1, cdfdcddf    (mode II) at φ=0 

the above-mentioned two-point boundary value problem reduces to the Cauchy problem. The Cauchy 

problem is usually solved by using the Runge-Kutta method [9], when choosing the values of 

additional boundary constants 
21,cc  in such way as to satisfy the main boundary conditions at φ=π 

(Eq. 11).  

 

The boundary conditions (Eq. 12), followed from symmetry conditions, does not valid for mixed 

mode of loading or for inclined crack under tension (Fig. 1). In this case the boundary conditions at 

φ=0 can be represented as the follows [7-8]: 

 

2

33
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00 ,,, cdfdcdfdtgcddfcf   , φ=0.                    (13) 

 

The constant 
0c  is determined from some additional condition (named as normalization condition). 

Traditionally the normalization condition is selected in the form of 1)(max 


e
 [5-6]. 

The last two constants 
21,cc  are sought by shooting method - to choose these constants, so that at 

φ=π the boundary conditions (Eq. 11) are valid.  
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3. Method of solution  

 

To solve this problem let us denote ),,()( 211 ccff   and ).,()( 212 ccfddf   In order to satisfy 

the main boundary conditions (Eq. 11) it is necessary to find the solution of the following system of 

two nonlinear algebraic equations:  

 

 ,0),( 211 ccf  .0),( 212 ccf  (14) 

 

It should be noted that the functions ),( 211 ccf  and ),( 212 ccf  are not given in analytical form, but 

are found numerically by solving the above-mentioned Cauchy problem for different values of c1 and 

c2. The system of nonlinear equations (Eq. 14) can be solved by the Newton's method. Newton's 

method is an iterative method for solving the system of nonlinear algebraic equations [9]. Rewrite the 

general formula of Newton's method for the system (Eq. 14) as the follows: 
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where k

ic  is the value of the parameter ic  at the k-th step of iteration, k

jif ,  is the value of derivative 

of function if  with respect to jc ,  computed at the k-th step of iteration, i,j=1,2; k= 1,2,3,… 

To calculate numerically the values of k

jif ,  it is used the right finite difference scheme:  

 ,/)),(),(( 2112111,1  kkkkkkk ccfccff    

 ,/)),(),(( 2112112,1  kkkkkkk ccfccff    

 ,/)),(),(( 2122121,2  kkkkkkk ccfccff    

 ,/)),(),(( 2122122,2  kkkkkkk ccfccff    

where δ is  a small number.  

 

Thus, to find the next approximation ( 1

1

kc , 1

2

kc ) of the parameters c1 and c2 it is necessary to integrate 

three time the Cauchy problem by Runge-Kutta method for the values of parameters  

( kc1 , kc2 ), ( kc1 , kc2 ) and ( kc1 , kc2 ). 

 

The above-described method of solving the nonlinear differential equation (Eq. 10a) or (Eq. 10b) has 

been tested for correctness and accuracy and compared with some known analytical or numerical 

results. Thus, in the case n=1  there exist analytical expressions for the stress tensor components for 

any inclined cracks [1-3]. For mode I (α= 0 )  it is known the analytical result for the case n=∞  and 
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the numerical results for n>1 [5-6]. Testing has shown that for n=1 the value of the relative error 

does not exceed 10
-6

. The results of calculations based on above-described method as for the case 

n=∞  as for n>1  practically coincided with the numerical results from [5-6].  

 

4. Results of calculations  
 

Some results of calculations for stress distribution around the crack tip for plane stress and 

plane strain conditions are shown on the Figures 2-5.  

 

4.1. Plane stress 

 

 

 

Figure 2. The distribution of the equivalent stress e  and the maximum stress max   

around the crack tip for n=3 (plane stress). 

 

 

 

Figure 3. The distribution of the equivalent stress e  and the maximum stress max   

around the crack tip for n=7 (plane stress). 
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4.2. Plane strain 

 

 

 

Figure 4. The distribution of the equivalent stress e  and the maximum stress max   

around the crack tip for n=3 (plane strain). 

 

 

 

Figure 5. The distribution of the equivalent stress e  and the maximum stress max   

around the crack tip for n=7 (plane strain). 
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