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Abstract The local flexibility introduced by cracks changes the vibration behaviour of the structure and by
examining this change, crack severity can be identified. This paper presents the natural frequencies of
symmetric, in-plane free-vibrations of Timoshenko portal frame with and without open crack for different
boundary conditions. Cracked segment is modelled as two segments connected by a massless torsional
spring. Considering appropriate compatibility requirements at the crack section in any one of segments and
at the junction of two segments, the characteristic equations are established for corresponding boundary
conditions and solved for natural frequencies by numerically. Crack location ranging from 20% to 70% of
length of segment and crack size ranging from 20% to 60% of depth have been considered. Results obtained
analytically are compared numerically using standard commercially available finite element software. The
frame has been modelled by using quadratic quadrilateral shell elements and quarter-point singular elements
are employed around the crack-tip. It is observed that as expected, with increase in crack depth the change in
frequencies of the frame with and without crack increases. The maximum difference between the analytical
and numerical results is 7.09% for all the cases considered, which proves usefulness of the data.
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1. Introduction

The problem of Timoshenko portal frames with defect is of importance in many fields of
engineering. Defects are almost unavoidable in such frames and their existences will decrease
stiffness, strength and safety. Although, a number of accurate, effective and reliable on-line damage
detection methods based on either X-ray, ultrasonic tests etc., are available, their adoption require
scanning of the whole length of frame. This process is a very time consuming, labour-intensive and
expensive. In view of these limitations there is a need to develop Non-Destructive Testing methods
which can detect damages in a component from the measurement of vibration responses, which may
be collected from at a single point, or at the most, a few points, on the component.

The most significant vibration parameter applied in damage identification methods is change in
natural frequencies of vibrations of structures caused by the crack. Hence, it may be possible to
predict the presence of a crack from the measurements of natural frequencies of the damaged
component. A wide variety of beam structures modelled by Euler-Bernoulli or Timoshenko beam
theory have been considered for crack detection by representing the crack with massless torsional
spring[1-9] etc. Experimental results, though not very exhaustive, are also reported.

Most of the studies on frames consider them to be free from defects [10-16]. A few investigators
have reported inverse problem of determination of crack details from the natural frequencies or
mode shapes (e.g.,[17-19]) for frame modelled by Euler-Bernoulli beam theory. Frames modelled
by Timoshenko beam theory with crack have not yet been studied. This paper presents, a method of
solving a forward problem i.e., determination of natural frequencies knowing the crack details of
symmetric, in-plane vibrations of Timoshenko portal frame with crack. Associated cracked segment
in the portal frame is modelled as two segments connected by a massless torsional spring. The
characteristic equations are established using boundary conditions, compatibility conditions at
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junctions of two segments and continuity conditions at the crack location. These characteristic
equations are used to compute the natural frequencies of Timoshenko portal frame by numerically.
Finally, these computed natural frequencies are compared with that of natural frequencies obtained
from finite element method for fixed-hinged, hinged-hinged and fixed-fixed end conditions.

2. Theoretical formulation

For in-plane free vibration analysis of Portal frame without and with crack, initially a beam with
crack has been studied and natural frequencies have been compared with available literature. For
the In-plane free vibration analysis of portal frame, transverse and longitudinal motions of each
member are taken into consideration. In analytical modelling of frame, Timoshenko beam theory
approach is used for analysis of transverse vibration, while axial vibration of rod is considered for
analysis of longitudinal vibration of each member.

A portal frame containing a part through-the-thickness edge crack undergoing free transverse
vibration, gives rise to a deformation pattern corresponding to natural frequencies. This in turn will
change the slope-mode shape, curvature mode shape, etc. The forward problem of determination of
natural frequencies knowing the crack details for fixed-hinged, hinged-hinged and fixed-fixed end
conditions have been examined. Accuracy obtainable in connection with natural frequencies is
compared numerically using commercially available FE tool for different boundary conditions.

2.1. Formulation for portal frame without crack

For a free, in-plane, symmetric transverse and axial motions of each segments in portal frame
without any crack is modelled by using Timoshenko beam theory i.e., taking the effects of shear
deformation and rotational inertia. Neglecting damping effect, the mode shape equations of each
segments are governed by (Fig. 1)[11]

Transverse motion:

V"(n)+ (o +1) V() —(@—-or)v(7)=0, O<n<p fori=123 (1)
Slope due to bending:
"(17,)+ (o +7) ¢n,) — (@ —0o7)d(n,) =0, O<m,<p fori=123 )

Longitudinal motion:
wn)+7°v(n)=0, 0<np <p fori=123 @)

where v; is transverse displacement, u; is axial displacement, ¢; is the rotation due to bending of the
segments, these are function of non-dimensional position, 7; along the length of segment in a
particular mode for the segment 7, a prime indicates differentiation with respect to 7; and additional
parameters given by
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Figure 1. Schematic of Timoshenko portal frame: (i) front view and (i) side view.
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E is modulus of elasticity, 7 is second moment of inertia, 4 is cross sectional area, G is shear
modulus, p is density of material, x is Timoshenko’s shear coefficient and its value is 5/6 for
rectangular cross-section, L is total length of portal frame.

The solutions of Eq. (1-3) are given by

v.(17,) = 4.cosh Az, + B;sinh A, + C,cos Ly, + D,sin 4,;,, 0<n, < B fori=12,3 ()
¢.(n.) = q,4,sinh A;7, + ¢, B, cosh A7, + ¢,C,sin A1, — q,D,c0s A, 0<ny, < B, fori=123 (6)
u.(n)=Esinyg +Fcosyn, 0<n<p fori=123 (7)

where ﬂ1=\/ (0'22' _ott. J o= Lo Lz 2 /11+/13 0= /ﬁ/{/ﬁ ’

A;, B;, C;, D;, E;and F, are arbitrary constants evaluated from the boundary conditions.
The boundary and compatibility conditions for a fixed-hinged frame (Fig. 1) are as follows.

at 7,=0; v(0)=0, 4(0)=0, w©,(0)=0 (8)
at 7, =f;; vs(B) =0, &(B;)=0, uy(B;)= 0}
at m=p, 1,=0 v0)=u(B), -w(B)=u,(0), v,(0)=v(B), ¢(0)= (Zjl'(ﬂl)} (9)
KG[V; (O)_ ¢, (0)] = Eu]'.(ﬂl)’ KG[v]t(ﬂl) ¢1(ﬂ1)] E“z( )
at 1=y 1,=0 v(0)=u,(B,), —v,(B,) =u3(0), v3(0)=v5(5,), ¢:(0)=4¢; (182)} (10)
KGlv, (O)_ 28 (O)] = Eu, (ﬂz )' KGlv, (ﬂz)_ ¢2( 2 )] =—Eu, (O)

By substituting Egs. (5-7) in to Egs. (8-10) results in following 18 homogeneous equations.

A4+C, =0 gllg

B —q,D,=0 12

4,5, Fiqi 01 (13)

A4;,cosh 4, B, + B;sinh A, 5, + C; €08 A, 3, + D;sin A, 5, =0 (14)

A1, COSH A, B, + By, SiNN 4 3, + Co g, €OS 2, By + Dy, SIN A By =0 (15)
E,sin yB, + F,cos yf, = 0 (16)
E,sinyp, + F,cosyp,— A, —C, =0 (17)

A cosh A, B, + B,sinh A, 8, + C,cos L, 3, + D;sin L, B, + F, =0 (18)

AAsinh 4,8, + B4, cosh 4,8, — G4, Sin 4,8, + DA, €S A, 3, — 4B, — ,D, =0 (19)
A4,q,COSNA B, + B Ayg SINN A, B, + Ci A4, COS A, B, + Didoq, SIN A, B, = Agh Ay = 2,4,C, =0 (20)

7/E(E1 cosyp, — Fisinyp,) - KG[BZ(ﬂl - ql)+ Dz(/iz + 92)%: 0 (21)
KG[Al(ﬂl_ql)Sinhﬂlﬂl + Bl(ﬂ‘l_ql)COSh ﬂﬁﬂl_cl(ﬁ'z"' 9, )Sin oy +D1(ﬂ'z+ 9, COSﬂ,zﬂl]+E]/E2 =0(22)
E,sinyB, + F,co8 yf3, — A, — C5 =0 (23)

A, cosh 4,3, + B, sinh Alﬁz +C,C08 L[, +D,sin,B3,+F,=0 (24)

A, A4, sinh A B, + B, A, cosh A, B, — C,A,Sin 4, 3, + D, A, CoSA, B, — A4,.B; — A,D; =0 (25)

A, 209, COSh A B, + By gy SINh A B, + Cy 2,0, COS Ao B, + D, 25, SIN 2, By — Ay A3 — 2,9,C5 = 0 (26)

7E(E, Cos 7, — F, sin KG[B (4 =)+ Dy(%, +4,) (27)

KG[Az(ﬂi_%)Sinh/qiﬂz"'Bz(/ﬁ %)COShﬂiﬁz (%"‘%)Smﬂzﬁz‘*D Z2+q2;COSﬂ2ﬁ2]+E7/E =0 (28)

These can be expressed conveniently in the following form.

[A(a)) ]lelS { }18><1 {O }18><1 (29)

where {C}={41,B:...F5}" are unknown arbitrary constants.
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For non-trivial solution,

|A(w)| =0 (30)
which gives the characteristic equations. Solving this equation numerically, the natural frequencies
of portal frame without crack are obtained.

2.2. Formulation for portal frame with crack located in left vertical segment

One of the convenient methods of modelling the vibration of a beam segment with a crack is to split
the segment into two around the crack section and connect them by massless spring element, whose
flexibility is given by a matrix of size 6x6 [20,21]. When the various modes of vibration become
uncoupled, the size of the flexibility matrix reduces. Particularly, for a pure transverse vibration the
matrix is of size 1x1. That is, there is only one spring element, which is a torsional spring. A typical
representation of a portal frame with a crack located in left vertical segment is shown in Fig. 2. The
governing mode shape equations of each segment are of the form:

V) + @+ 1))~ (@ - ot)(n) =0, 0<n,<f fori=1234 (3
§"n) o+ D fln) (e -or)g(n) =0, 0<n<p fori=1234 (2

uln)+r*v(n)=0 0<n<p fori=1234

where values of f; are as follows.
B =06L/JL,B,=1-08)L,/L, B,=L,/L, B, =L,/L and crack location, 0<5<1 (34)
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Figure 2. (i) Schematic of Timoshenko portal frame with crack in
left vertical segment and (if) Representation by rotational spring.

The general solutions of Eq. (31-33) are of the form Egs. (5-7). Boundary and compatibility
conditions at the junctions are as follows.

at 7, =0 v(0)=0, 4(0)=0, wu(0)=0 } (35)

at n,=p,; V4(ﬁ4) =0, ¢£(ﬂ4) =0, u4(ﬁ4) =0

at =L, 1,=0; v3(0)=uy(B,), —v,(B;)=u3(0), v;(0)=vy(5), #(0)=4¢, (,Bz)} (36)
KG["é (O)_ ¢, (O)] = Eu, (ﬁz )’ KG[V; (ﬂz )_ $, (182 )] = —Eu;(O)

at ;= 163’ = 0; Va (O) = u3(ﬂ3)a - v3(ﬂ3) =U, (0)’ V:1 (O) = Vé(ﬂ3)1 ¢z; (O) = ¢3'(ﬂ3)} (37)

KG[V;(O)_ A (O)] = Eué(ﬁ3 )’ KG[Vé(ﬂ3)_ ¢2( 3)] =—Eu, (O)

The compatibility conditions at crack location are given by

at m=p4, 7,=0, v (O) = vl(ﬂl)’ ¢, (O) = ¢1,(131)1 1 (O)_ 9, (0) = vll(ﬂl)_ ¢1(ﬂ1)v} (38)
V) (O)_Vi(ﬁl) = §¢1'(ﬂ1)' ”2(0) = ul(ﬁl)’ u;(O) = ”1'(:31)
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where ¢ is the non-dimensional flexibility of the torsional spring representing the crack and the
relation through crack size can be written in the following form[6]:

E=671r? %f (39)
where r is crack size a to segment depth /4 ratio and f'is crack geometry parameter defined by
£(r)=0.6384 —1.035r +3.7201* —5.1773° + 7.5331* —7.332/° + 2.49097° (40)

By inserting general solutions of type (5-7) into Egs. (35-38) results in following 24 homogeneous
equations.

A+C, =0 (41)

@B, —q,D, =0 (42)

£ =0 (43)

A, cosh 4,8, + B,sinh 4,8, + C,cos 1,3, + D,sin L, 3, =0 (44)

A, 2uq,.c08h Ay 3, + B, Ayq, Sinh A4 5y + €y 2,9, COS 4, B, + D, Ayq,SIN 4,8, = 0 (45)

E,sinyp, + F,cosyp, =0 (46)

A, cosh A B, + B;sinh A, B, +C,cos L, B+ D,sin,B8—A4,—-C, =0 (47)

A42,q,C0sh A, B, + BiAg, Sinh A, + CiA,q, COS 4, B, + Didyq, SN A, B, — Mgy A, — 2,4,C, =0 (48)

A S BGOSR L gy ind D 05 B ) D 0 (49)

44 sinh 2,8, + £7,g, cosh 2,3 )+ B, (4, cosh 4B, + S sinh 43 } (50)
+ (8, COS A, = 1y SiN 2o 5, )+ D (2, €08 1o By + §20, SN 2o 8, )= By = Dy, =0

E,sinyp, + F,cosyB, —F, =0 (51)

E,cosyp, — E,sinyp,—E, =0 (52)

E,sinyp, + F,cosyB, — 4, — C, =0 (53)

A,cosh 4,8, + B,sinh 4,3, + C,cos L3, + D,sin LS, + F, =0 (54)

A,2,sinh A, B, + B,A, cosh A, 8, — C, A, sin A, 3, + D,A, oS 4,3, — 4B, — A,D, =0 (55)
A,2,q,c0sh 4, B, + B, 4q, SINW A, B, + CoA,q, COS A, 3, + Dy 2,q, SIN 4, By — Agy As — 2,6,C5 =0 (56)

7E(E2 CoS 5, — F,sin 7ﬂ2)_ KG[BS( N %)"‘ Ds(iz + 92)1: 0 (57)
KG[Az(ﬂi _%)SinhWZ +Bz(/11 _%)Cosmnﬂz _Cz(ﬂz +Q3Sin/12ﬁ2 +D2(/12 +4, COS%ﬁz]*'E?Es =0 (58)
E,sinyp, + FycosyB,— 4,—C, =0 (59)

A,cosh A, 3, + B,sinh A, B, + C,COS A, B, + D,Sin 1,3, + F, =0 (60)

A A, sinh A, B, + B4, cosh A, B, — CoA,Sin A, B, + D,A, oS A, 3, — A,B, — A,D, =0 (61)

As g, €0sh 4, B; + BiAig, SINh 4, B; + Cy Ay, COS A, B, + Didoq, SIN A, By — gy Ay — 4,4,C, = 0 (62)
7/E(E3 €os 3, — Fysin 71832)_ KG[B4(/11 - %)+ D4(/12 T4, )] =0 (63)

WGl A% —q))sinh A, + By(2, — g, )coshAuff, = G2, +4,)sin A, + Dy(4y + 4, )cos 2, |+ EvfE, =0 (64)

Egs. (41-64) can be expressed conveniently in the following matrix equation.

r [A(a), 5 )]24><24 {C}24><l = {0}24><1 (65)
where {C}={A41,B1...F4} are unknown arbitrary constants.

For non-trivial solution
A, &) =0 (66)
Evaluation of Eq. (66) numerical method yields natural frequencies of portal frame with crack.

2.3. Formulation for Portal frame with crack located in horizontal segment

The modelling of portal frame with crack located in horizontal segment (Fig.3) is done in the similar
way as explained in the preceding section. The characteristic equations of type (66) can be obtained
by incorporation of the following compatibility conditions at two junctions and crack location with
associated boundary conditions.

at n = ﬂl’ = 0; V) (0) = ”1(;61): _Vl(ﬂl) =U, (O)! V; (O) = Vll(ﬂl)a ¢2' (O) = %(ﬂl)} (67)
KG[V; (0)_ ¢ (0)] = Eul'(ﬂl)’ KG[Vl'(ﬂl)_ ¢1(ﬂ1)] =—Eu, (0)
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Figure 3. Schematic of Timoshenko portal frame with crack located in horizontal

segment represented by torsional spring.
at n=ps 1,=0; v,(0) =us(5,),

—v3(;) = u,(0),

vi(0)=v(8), 40 =4 (ﬂs)} (68)

KG["A (O) 2 (O)] = Eu (ﬂs )’ KG["& (ﬂs)_ 9, (ﬂs )] =—Eu, (0)

at m,=p4,, 1,=0;

v3(0)= Vz( 2)1 ¢é(0): ¢é(ﬂ2)v vé(O)—¢3(0): V;( 2)_¢2(ﬂz)v}
Vé(o)_vé(ﬂz): §¢£( 2), ”3(0): ”2(,32 )’ ué(O) = ”;(,Bz)

(69)

For other end conditions; hinged-hinged and fixed-fixed, of portal frame with crack are as follows.

For hinged-hinged ends:
at 7, =0; n(0)=0, ¢(©0)=0, «(0)=0 } (70)
at 7, =p, V4(ﬂ4) =0, ¢z’1(ﬁ4) =0, ”4(:34) =0

For fixed-fixed ends:
at 7, =0; 1 (0)=0, 4(0)=0, «(0)=0 } 1)
at 1, = fy; vi(B) =0, 4,(8)=0, u,(B,)=0

3. Finite element computation for natural frequencies

The natural frequencies of portal frame with and without crack are computed for a numerical
verification of the solution to forward problem by a standard finite element software (i.e.,
ANSYS-11[22]). A frame is discretized by Eight-node quadrilateral shell elements and quarter-point
singular elements employed around the crack-tip is as shown in Fig. 4.

Crack region

[ENSa

Crack faces Crack tip

Enlarged portion of crack region

Figure 4. Schematic of finite element modelling of Timoshenko portal frame with crack

located in horizontal segment.
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4. Results and Discussions

In this study, non-destructive direct solutions for the estimation of the natural frequency of a portal
frame with and without crack have been presented. Changes in the natural frequencies of a portal
frame due to the presence of a crack may provide additional information for damage detection of
these structures. The presence of crack has been theoretically considered by an equivalent torsional
spring. To take into account the effects of rotational inertia and shear deformation, Timoshenko
beam theory has been employed. The three set of end conditions, fixed-hinged, hinged-hinged and
fixed-fixed, have been considered. Crack locations ranging from 20% to 70% of length of segment
and crack sizes ranging from 20% to 60% of depth are considered. By means of these boundary
conditions and applying suitable compatibility conditions at the cracked section, the characteristic
equations have been derived explicitly, whose solution provides the natural frequencies of the portal
frame. A MATLAB code has been written to compute the frequencies numerically. The computed
natural frequencies have been compared with those obtained by the finite element tool. The
geometry of the portal frame with following cross-sectional dimensions and material properties are
considered: Length of each no-crack segments (Z,)=0.225m, width (»)=0.0125m and depth
(h)=0.025m. The material data employed are: mass density (p)= 7800kg/m*, modulus of elasticity
E=210GPa, Poisson’s ratio £=0.3 and Timoshenko shear coefficient x =5/6. The first three natural
frequencies calculated by forward analysis are presented in Tables 1 and 2. The percentage
difference in the frequencies taking finite element results as the reference is shown in the Tables 1
and 2. The maximum difference among all results is 7.09% which proves usefulness of proposed
method. As expected, the trend of natural frequencies of portal frame with crack, decreases as the
crack size increases in comparison with natural frequencies of portal frame without crack (Fig. 5).

Crack size. a/h Crack size. a/h
0.2 0.3 0.4 0.5 0.6 0.2 0.3 04 0.5 0.6

O. O T T T 1 0 - — A
§ ‘."--..______‘. w _'_'—-—-t-._._________'
g -1.0 S 4
é \ X =
£ -20 =N =8
e’“:i} , \\\' o —+—First mode \.\
E 3.0 - E“St 11(110(16 | é”_lq —=— Second mode

- >econd mode = ~—#— Third mode
c\: —#— Third mode \' :\; \I

-4I O 0 N -1 6 -

(@) (i)

Figure 5. Plot of percentage change in natural frequencies vs. crack size: (i) Fixed-hinged
ends of frame with crack located in vertical segment at 6=0.4 and (i7) Fixed-fixed ends of
frame with crack located in horizontal segment at 6=0.4.

5. Conclusion

Solution to forward problems i.e. determination of natural frequencies knowing the crack details in
Timoshenko portal frame has been studied. The presence of crack has been modelled by an
equivalent torsional spring. It is found that the maximum percentage differences between the natural
frequencies computed by analytical approach are less than 7.09% as compared to the finite element
result. Changes in the natural frequencies of the portal frame due to the presence of a crack may
provide additional information for damage detection of these structures.
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Table 1. Comparison of natural frequencies computed by analytical method and finite-element
method for Timoshenko portal frame with crack located in left vertical segment.
Natural frequencies (Hz)

End Crack

a/h Analytical method Finite element method % Difference
cond | loc. o
(0] w» ;3 (0] w» ;3 (0] w» w3
F-H | nocrack 278.97 1247.63 1874.68 284.72 1253.30 191570 2.02 045 2.14

0.2 0.2 27359 1246.07 187427 278.67 1250.30 1914.10 182 0.34 2.08
04 259.76 124222 1873.25 263.04 124150 1909.00 1.25 -0.06 1.87
0.6 242.61 1237.76 1872.06 239.40 1226.50 1898.60 -1.34 -0.92 1.40
0.4 0.2 27782 1246.41 1870.52 283.40 1252.70 1912.40 197 050 2.19
0.4 27453 1242.68 1855.99 279.40 1251.40 1901.20 1.74 0.70 2.38
0.6 269.52 1236.45 1825.18 271.45 1249.70 185160 0.71 106 143
0.7 0.2 27839 1238.80 1866.35 284.15 1245.80 1908.50 2.03 056 221
04 276.67 121219 1842.10 282.47 122510 1888.50 2.05 105 246
0.6 273.87 1169.33 1806.42 279.38 1186.20 1846.20 197 142 215
H-H | nocrack 171.26 1127.17 1699.66 175.89 1127.60 172590 2.63 0.04 1.52
0.2 0.2 17105 112154 1684.13 175.73 1123.00 1707.30 266 0.13 1.36
0.4 170.33 1100.86 1631.91 175.24 1106.70 1635.10 2.80 0.53 0.20
0.6 168.74 1049.62 1536.78 174.02 1044.30 1435.10 3.03 -0.51 -7.09
0.4 0.2 17047 111251 1669.77 17515 111430 169140 267 0.16 1.28
04 167.87 1062.04 1590.26 172.84 1068.80 1590.50 2.88 0.63 0.02
0.6 16252 963.96 1501.23 167.14 94469 1438.70 2.76 -2.04 -4.35
0.7 0.2 169.22 1116.83 1695.43 173.83 111850 172150 265 0.15 151
04 16297 1086.81 1684.06 167.78 1093.50 170790 287 0.61 140
0.6 15236 1041.43 1669.02 155.49 1047.50 1680.50 2.01 0.58 0.68
F-F | nocrack 371.92 1412.93 2299.39 379.70 1426.70 2333.60 2.05 0.97 1.47
0.2 0.2 367.23 1411.38 229855 374.29 1423.10 233290 189 082 147
0.4 35535 1407.55 2296.43 360.43 141250 232990 141 035 144
0.6 340.98 1403.10 2293.85 339.92 139340 2323.80 -0.31 -0.70 1.29
0.4 0.2 371.14 1410.18 227530 378.75 142520 2306.00 201 105 133
0.4 368.89 1401.69 2193.73 375.81 142160 2197.10 184 140 0.15
0.6 36549 1387.23 2076.01 369.81 141580 1963.20 1.17 202 -5.75
0.7 0.2 371.08 1399.78 2285.05 378.86 1415.70 231850 2.05 112 144
0.4 368.56 1361.07 224352 376.45 1386.10 2286.90 2.10 181 1.90

0.6 364.46 130156 2186.91 372.01 133150 215550 2.03 225 -1.46
Note: F-H - Fixed-hinged, H-H — Hinged-hinged and F-F — fixed-fixed end conditions.
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Table 2. Comparison of natural frequencies computed by analytical method and finite-element
method for Timoshenko portal frame with crack located in horizontal segment.

Natural frequencies (Hz)
End | Crack : — -
a’h Analytical method Finite element method % Difference
cond. | loc. &
(0] (0] ;3 (0] (0] ;3 (0] (0] ;3
F-H | nocrack 278.97 1247.63 1874.68 284.72 1253.30 1915.70 2.02 045 2.14

0.2 0.2 276.55 1246.04 1865.88 282.13 1252.10 190540 1.98 0.48 2.07
04 26946 1241.25 1839.67 275.00 1248.90 187490 2.01 0.61 1.88
0.6 258.46 1233.46 1798.69 262.03 1242.80 181640 136 0.75 0.98
0.4 0.2 278.33 1233.51 1855.02 284.05 1240.20 1893.60 2.01 0.54 2.04
04 27638 1190.17 1804.91 282.21 1201.00 1834.20 2.07 0.90 1.60
0.6 273.01 1119.64 1746.49 278.46 111940 1739.40 196 -0.02 -0.41
0.7 0.2 278.82 123195 1874.48 284.52 1238.60 191560 2.00 054 215
0.4 278.37 1186.61 1873.94 283.86 1197.80 1913.80 1.93 0.93 2.08
0.6 277.61 1118.15 1873.15 28240 1123.20 1908.10 1.70 045 1.83

H-H | nocrack 171.26  1127.17 1699.66 175.89 1127.60 172590 2.63 0.04 1.52
0.2 0.2 170.06 1121.71 1689.28 174.53 1123.00 171470 256 0.11 1.48
0.4 166.48 110535 1660.88 170.61 1110.50 1685.60 2.42 0.46 1.47
0.6 160.72 1079.11 1622.47 162.97 1087.80 1638.10 1.38 0.80 0.95
0.4 0.2 17112 1112.64 1698.17 17571 111420 172410 261 0.14 1.50
04 170.71 1069.01 1693.32 17524 1075.70 1718.60 259 0.62 147
0.6 169.97 999.73 1684.19 17422 999.78 1701.00 2.44 0.01 0.99
0.7 0.2 170.72 1116.71 1694.33 17529 1118.20 1720.20 2.61 0.13 1.50
0.4 169.08 108534 1678.86 173.48 1091.70 1703.30 254 0.58 1.43
0.6 166.31 1035.35 1655.99 169.74 1040.60 1669.40 2.02 0.50 0.80

F-F | nocrack 371.92 141293 2299.39 379.70 1426.70 2333.60 2.05 0.97 1.47
0.2 0.2 370.06 1408.26 2284.20 377.59 1422.60 2317.40 199 1.01 1.43
0.4 364.63 1394.43 224090 371.73 1410.90 227490 191 117 149
0.6 356.26 1372.69 2179.08 361.01 1388.60 2202.70 1.32 1.15 1.07
0.4 0.2 371.71 1387.86 2296.75 379.42 1402.20 233050 2.03 1.02 145
04 371.06 1316.61 2286.83 378.70 1333.30 2318.10 2.02 125 1.35
0.6 369.92 1213.84 2266.57 377.13 1207.20 2265.20 191 -0.55 -0.06
0.7 0.2 371.08 1397.73 2290.78 378.77 141220 2324.10 2.03 102 143
0.4 368.54 1353.49 2265.65 376.00 1371.00 229540 198 1.28 1.30
0.6 36436 1286.74 2229.64 370.48 1292.60 223450 1.65 045 0.22

Note: F-H - Fixed-hinged, H-H — Hinged-hinged and F-F — fixed-fixed end conditions.
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