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Abstract The local flexibility introduced by cracks changes the vibration behaviour of the structure and by 
examining this change, crack severity can be identified. This paper presents the natural frequencies of 
symmetric, in-plane free-vibrations of Timoshenko portal frame with and without open crack for different 
boundary conditions. Cracked segment is modelled as two segments connected by a massless torsional  
spring. Considering appropriate compatibility requirements at the crack section in any one of segments and 
at the junction of two segments, the characteristic equations are established for corresponding boundary 
conditions and solved for natural frequencies by numerically. Crack location ranging from 20% to 70% of 
length of segment and crack size ranging from 20% to 60% of depth have been considered. Results obtained 
analytically are compared numerically using standard commercially available finite element software. The 
frame has been modelled by using quadratic quadrilateral shell elements and quarter-point singular elements 
are employed around the crack-tip. It is observed that as expected, with increase in crack depth the change in 
frequencies of the frame with and without crack increases. The maximum difference between the analytical 
and numerical results is 7.09% for all the cases considered, which proves usefulness of the data.  
 
Keywords Timoshenko Portal Frame, Open Crack, Massless Torsional Spring, In-plane Free Vibration, FEM  
 
1. Introduction 
 
The problem of Timoshenko portal frames with defect is of importance in many fields of 
engineering. Defects are almost unavoidable in such frames and their existences will decrease 
stiffness, strength and safety. Although, a number of accurate, effective and reliable on-line damage 
detection methods based on either X-ray, ultrasonic tests etc., are available, their adoption require 
scanning of the whole length of frame. This process is a very time consuming, labour-intensive and 
expensive. In view of these limitations there is a need to develop Non-Destructive Testing methods 
which can detect damages in a component from the measurement of vibration responses, which may 
be collected from at a single point, or at the most, a few points, on the component.  
 
The most significant vibration parameter applied in damage identification methods is change in 
natural frequencies of vibrations of structures caused by the crack. Hence, it may be possible to 
predict the presence of a crack from the measurements of natural frequencies of the damaged 
component. A wide variety of beam structures modelled by Euler-Bernoulli or Timoshenko beam 
theory have been considered for crack detection by representing the crack with massless torsional 
spring[1-9] etc. Experimental results, though not very exhaustive, are also reported.  

 
Most of the studies on frames consider them to be free from defects [10-16]. A few investigators 
have reported inverse problem of determination of crack details from the natural frequencies or 
mode shapes (e.g.,[17-19]) for frame modelled by Euler-Bernoulli beam theory. Frames modelled 
by Timoshenko beam theory with crack have not yet been studied. This paper presents, a method of 
solving a forward problem i.e., determination of natural frequencies knowing the crack details of 
symmetric, in-plane vibrations of Timoshenko portal frame with crack. Associated cracked segment 
in the portal frame is modelled as two segments connected by a massless torsional spring. The 
characteristic equations are established using boundary conditions, compatibility conditions at 
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junctions of two segments and continuity conditions at the crack location. These characteristic 
equations are used to compute the natural frequencies of Timoshenko portal frame by numerically. 
Finally, these computed natural frequencies are compared with that of natural frequencies obtained 
from finite element method for fixed-hinged, hinged-hinged and fixed-fixed end conditions.  
 
2. Theoretical formulation 
 
For in-plane free vibration analysis of Portal frame without and with crack, initially a beam with 
crack has been studied and natural frequencies have been compared with available literature. For 
the In-plane free vibration analysis of portal frame, transverse and longitudinal motions of each 
member are taken into consideration. In analytical modelling of frame, Timoshenko beam theory 
approach is used for analysis of transverse vibration, while axial vibration of rod is considered for 
analysis of longitudinal vibration of each member. 
 
A portal frame containing a part through-the-thickness edge crack undergoing free transverse 
vibration, gives rise to a deformation pattern corresponding to natural frequencies. This in turn will 
change the slope-mode shape, curvature mode shape, etc. The forward problem of determination of 
natural frequencies knowing the crack details for fixed-hinged, hinged-hinged and fixed-fixed end 
conditions have been examined. Accuracy obtainable in connection with natural frequencies is 
compared numerically using commercially available FE tool for different boundary conditions. 
 
2.1. Formulation for portal frame without crack 
 
For a free, in-plane, symmetric transverse and axial motions of each segments in portal frame 
without any crack is modelled by using Timoshenko beam theory i.e., taking the effects of shear 
deformation and rotational inertia. Neglecting damping effect, the mode shape equations of each 
segments are governed by (Fig. 1)[11] 
Transverse motion: 

(1) 
Slope due to bending: 

            (2) 
Longitudinal motion: 

(3) 
 
where vi is transverse displacement, ui is axial displacement, φi is the rotation due to bending of the 
segments, these are function of non-dimensional position, ηi along the length of segment in a 
particular mode for the segment i, a prime indicates differentiation with respect to ηi and additional 
parameters given by 
 
 
 
 
 
 
 
 
 
 
 
 

( ) 3,2,1for 0,0)()()()( =<<=−−′′++′′′′ ivvv iiiiiiii βηησταητση

3,2,1for 0,0)()( 2 =<<=+′′ ivu iiiiii βηηγη

( ) 3,2,1for 0,0)()()()( =<<=−−′′++′′′′ iiiiiiiii βηηφσταηφτσηφ

Figure 1. Schematic of Timoshenko portal frame: (i) front view and (ii) side view.  
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(4) 
 

E is modulus of elasticity, I is second moment of inertia, A is cross sectional area, G is shear 
modulus, ρ is density of material, κ is Timoshenko’s shear coefficient and its value is 5/6 for 
rectangular cross-section, L is total length of portal frame. 
 
The solutions of Eq. (1-3) are given by 

(5) 
(6) 
(7) 

 
  
 
 
Ai, Bi , Ci, Di , Ei and Fi are arbitrary constants evaluated from the boundary conditions.                          
The boundary and compatibility conditions for a fixed-hinged frame (Fig. 1) are as follows. (8) 
 
 

(9) 
 
 

(10) 
 
 
By substituting Eqs. (5-7) in to Eqs. (8-10) results in following 18 homogeneous equations. 

(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 
(20) 
(21) 
(22) 
(23) 
(24) 
(25) 
(26) 
(27) 
(28) 

 
These can be expressed conveniently in the following form. 

(29) 
where {C}={A1,B1…F3}T are unknown arbitrary constants.  
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For non-trivial solution,  

(30) 
which gives the characteristic equations. Solving this equation numerically, the natural frequencies 
of portal frame without crack are obtained. 
 
2.2. Formulation for portal frame with crack located in left vertical segment 
 
One of the convenient methods of modelling the vibration of a beam segment with a crack is to split 
the segment into two around the crack section and connect them by massless spring element, whose 
flexibility is given by a matrix of size 6×6 [20,21]. When the various modes of vibration become 
uncoupled, the size of the flexibility matrix reduces. Particularly, for a pure transverse vibration the 
matrix is of size 1×1. That is, there is only one spring element, which is a torsional spring. A typical 
representation of a portal frame with a crack located in left vertical segment is shown in Fig. 2. The 
governing mode shape equations of each segment are of the form: 

(31)  
(32) 
(33) 

 
where values of βi are as follows. 

(34) 
 
 
 
 
 
 
 
 
 
 
 
 
 
The general solutions of Eq. (31-33) are of the form Eqs. (5-7). Boundary and compatibility 
conditions at the junctions are as follows.  
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The compatibility conditions at crack location are given by 
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Figure 2. (i) Schematic of Timoshenko portal frame with crack in 
left vertical segment and (ii) Representation by rotational spring.  
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where ξ is the non-dimensional flexibility of the torsional spring representing the crack and the 
relation through crack size can be written in the following form[6]:  
 
 
where r is crack size a to segment depth h ratio and f is crack geometry parameter defined by 

(40) 
By inserting general solutions of type (5-7) into Eqs. (35-38) results in following 24 homogeneous 
equations. 

(41) 
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Eqs. (41-64) can be expressed conveniently in the following matrix equation. 

 (65) 
where {C}={A1,B1…F4}T are unknown arbitrary constants.  
For non-trivial solution  

(66) 
Evaluation of Eq. (66) numerical method yields natural frequencies of portal frame with crack. 
 
2.3. Formulation for Portal frame with crack located in horizontal segment 
 
The modelling of portal frame with crack located in horizontal segment (Fig.3) is done in the similar 
way as explained in the preceding section. The characteristic equations of type (66) can be obtained 
by incorporation of the following compatibility conditions at two junctions and crack location with 
associated boundary conditions. 
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For other end conditions; hinged-hinged and fixed-fixed, of portal frame with crack are as follows. For hinged-hinged ends: 

 
 
 
For fixed-fixed ends:  
 
 
 
 
3. Finite element computation for natural frequencies 
 
The natural frequencies of portal frame with and without crack are computed for a numerical 
verification of the solution to forward problem by a standard finite element software (i.e., 
ANSYS-11[22]). A frame is discretized by Eight-node quadrilateral shell elements and quarter-point 
singular elements employed around the crack-tip is as shown in Fig. 4.  
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Figure 3. Schematic of Timoshenko portal frame with crack located in horizontal 
segment represented by torsional spring.  
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4. Results and Discussions  
 
In this study, non-destructive direct solutions for the estimation of the natural frequency of a portal 
frame with and without crack have been presented. Changes in the natural frequencies of a portal 
frame due to the presence of a crack may provide additional information for damage detection of 
these structures. The presence of crack has been theoretically considered by an equivalent torsional 
spring. To take into account the effects of rotational inertia and shear deformation, Timoshenko 
beam theory has been employed. The three set of end conditions, fixed-hinged, hinged-hinged and 
fixed-fixed, have been considered. Crack locations ranging from 20% to 70% of length of segment 
and crack sizes ranging from 20% to 60% of depth are considered. By means of these boundary 
conditions and applying suitable compatibility conditions at the cracked section, the characteristic 
equations have been derived explicitly, whose solution provides the natural frequencies of the portal 
frame. A MATLAB code has been written to compute the frequencies numerically. The computed 
natural frequencies have been compared with those obtained by the finite element tool. The 
geometry of the portal frame with following cross-sectional dimensions and material properties are 
considered: Length of each no-crack segments (Li)=0.225m, width (b)=0.0125m and depth 
(h)=0.025m. The material data employed are: mass density (ρ)= 7800kg/m3, modulus of elasticity 
E=210GPa, Poisson’s ratio μ=0.3 and Timoshenko shear coefficient κ =5/6. The first three natural 
frequencies calculated by forward analysis are presented in Tables 1 and 2. The percentage 
difference in the frequencies taking finite element results as the reference is shown in the Tables 1 
and 2. The maximum difference among all results is 7.09% which proves usefulness of proposed 
method. As expected, the trend of natural frequencies of portal frame with crack, decreases as the 
crack size increases in comparison with natural frequencies of portal frame without crack (Fig. 5).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5. Conclusion 
 
Solution to forward problems i.e. determination of natural frequencies knowing the crack details in 
Timoshenko portal frame has been studied. The presence of crack has been modelled by an 
equivalent torsional spring. It is found that the maximum percentage differences between the natural 
frequencies computed by analytical approach are less than 7.09% as compared to the finite element 
result. Changes in the natural frequencies of the portal frame due to the presence of a crack may 
provide additional information for damage detection of these structures.  
 

Figure 5. Plot of percentage change in natural frequencies vs. crack size: (i) Fixed-hinged 
ends of frame with crack located in vertical segment at δ=0.4 and (ii) Fixed-fixed ends of 
frame with crack located in horizontal segment at δ=0.4.  
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Table 1. Comparison of natural frequencies computed by analytical method and finite-element 

method for Timoshenko portal frame with crack located in left vertical segment. 
Natural frequencies (Hz) 

Analytical method Finite element method % Difference  End 
cond 

Crack 
loc. δ a/h 

ω1  ω2 ω3 ω1  ω2 ω3 ω1  ω2 ω3 
nocrack   278.97 1247.63 1874.68 284.72 1253.30 1915.70 2.02 0.45 2.14

0.2 273.59 1246.07 1874.27 278.67 1250.30 1914.10 1.82 0.34 2.08
0.4 259.76 1242.22 1873.25 263.04 1241.50 1909.00 1.25 -0.06 1.87

0.2 

0.6 242.61 1237.76 1872.06 239.40 1226.50 1898.60 -1.34 -0.92 1.40
0.2 277.82 1246.41 1870.52 283.40 1252.70 1912.40 1.97 0.50 2.19
0.4 274.53 1242.68 1855.99 279.40 1251.40 1901.20 1.74 0.70 2.38

0.4 

0.6 269.52 1236.45 1825.18 271.45 1249.70 1851.60 0.71 1.06 1.43
0.2 278.39 1238.80 1866.35 284.15 1245.80 1908.50 2.03 0.56 2.21
0.4 276.67 1212.19 1842.10 282.47 1225.10 1888.50 2.05 1.05 2.46

F-H 

0.7 

0.6 273.87 1169.33 1806.42 279.38 1186.20 1846.20 1.97 1.42 2.15
nocrack   171.26 1127.17 1699.66 175.89 1127.60 1725.90 2.63 0.04 1.52

0.2 171.05 1121.54 1684.13 175.73 1123.00 1707.30 2.66 0.13 1.36
0.4 170.33 1100.86 1631.91 175.24 1106.70 1635.10 2.80 0.53 0.20

0.2 

0.6 168.74 1049.62 1536.78 174.02 1044.30 1435.10 3.03 -0.51 -7.09
0.2 170.47 1112.51 1669.77 175.15 1114.30 1691.40 2.67 0.16 1.28
0.4 167.87 1062.04 1590.26 172.84 1068.80 1590.50 2.88 0.63 0.02

0.4 

0.6 162.52 963.96 1501.23 167.14 944.69 1438.70 2.76 -2.04 -4.35
0.2 169.22 1116.83 1695.43 173.83 1118.50 1721.50 2.65 0.15 1.51
0.4 162.97 1086.81 1684.06 167.78 1093.50 1707.90 2.87 0.61 1.40

H-H 

0.7 

0.6 152.36 1041.43 1669.02 155.49 1047.50 1680.50 2.01 0.58 0.68
nocrack   371.92 1412.93 2299.39 379.70 1426.70 2333.60 2.05 0.97 1.47

0.2 367.23 1411.38 2298.55 374.29 1423.10 2332.90 1.89 0.82 1.47
0.4 355.35 1407.55 2296.43 360.43 1412.50 2329.90 1.41 0.35 1.44

0.2 

0.6 340.98 1403.10 2293.85 339.92 1393.40 2323.80 -0.31 -0.70 1.29
0.2 371.14 1410.18 2275.30 378.75 1425.20 2306.00 2.01 1.05 1.33
0.4 368.89 1401.69 2193.73 375.81 1421.60 2197.10 1.84 1.40 0.15

0.4 

0.6 365.49 1387.23 2076.01 369.81 1415.80 1963.20 1.17 2.02 -5.75
0.2 371.08 1399.78 2285.05 378.86 1415.70 2318.50 2.05 1.12 1.44
0.4 368.56 1361.07 2243.52 376.45 1386.10 2286.90 2.10 1.81 1.90

F-F 

0.7 

0.6 364.46 1301.56 2186.91 372.01 1331.50 2155.50 2.03 2.25 -1.46
Note: F-H - Fixed-hinged, H-H – Hinged-hinged and F-F – fixed-fixed end conditions. 
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Table 2. Comparison of natural frequencies computed by analytical method and finite-element 
method for Timoshenko portal frame with crack located in horizontal segment. 

Natural frequencies (Hz) 
Analytical method Finite element method % Difference  End 

cond. 
Crack 
loc. δ a/h 

ω1  ω2 ω3 ω1  ω2 ω3 ω1  ω2 ω3 
nocrack   278.97 1247.63 1874.68 284.72 1253.30 1915.70 2.02 0.45 2.14

0.2 276.55 1246.04 1865.88 282.13 1252.10 1905.40 1.98 0.48 2.07
0.4 269.46 1241.25 1839.67 275.00 1248.90 1874.90 2.01 0.61 1.88

0.2 

0.6 258.46 1233.46 1798.69 262.03 1242.80 1816.40 1.36 0.75 0.98
0.2 278.33 1233.51 1855.02 284.05 1240.20 1893.60 2.01 0.54 2.04
0.4 276.38 1190.17 1804.91 282.21 1201.00 1834.20 2.07 0.90 1.60

0.4 

0.6 273.01 1119.64 1746.49 278.46 1119.40 1739.40 1.96 -0.02 -0.41
0.2 278.82 1231.95 1874.48 284.52 1238.60 1915.60 2.00 0.54 2.15
0.4 278.37 1186.61 1873.94 283.86 1197.80 1913.80 1.93 0.93 2.08

F-H 

0.7 

0.6 277.61 1118.15 1873.15 282.40 1123.20 1908.10 1.70 0.45 1.83
nocrack   171.26 1127.17 1699.66 175.89 1127.60 1725.90 2.63 0.04 1.52

0.2 170.06 1121.71 1689.28 174.53 1123.00 1714.70 2.56 0.11 1.48
0.4 166.48 1105.35 1660.88 170.61 1110.50 1685.60 2.42 0.46 1.47

0.2 

0.6 160.72 1079.11 1622.47 162.97 1087.80 1638.10 1.38 0.80 0.95
0.2 171.12 1112.64 1698.17 175.71 1114.20 1724.10 2.61 0.14 1.50
0.4 170.71 1069.01 1693.32 175.24 1075.70 1718.60 2.59 0.62 1.47

0.4 

0.6 169.97 999.73 1684.19 174.22 999.78 1701.00 2.44 0.01 0.99
0.2 170.72 1116.71 1694.33 175.29 1118.20 1720.20 2.61 0.13 1.50
0.4 169.08 1085.34 1678.86 173.48 1091.70 1703.30 2.54 0.58 1.43

H-H 

0.7 

0.6 166.31 1035.35 1655.99 169.74 1040.60 1669.40 2.02 0.50 0.80
nocrack   371.92 1412.93 2299.39 379.70 1426.70 2333.60 2.05 0.97 1.47

0.2 370.06 1408.26 2284.20 377.59 1422.60 2317.40 1.99 1.01 1.43
0.4 364.63 1394.43 2240.90 371.73 1410.90 2274.90 1.91 1.17 1.49

0.2 

0.6 356.26 1372.69 2179.08 361.01 1388.60 2202.70 1.32 1.15 1.07
0.2 371.71 1387.86 2296.75 379.42 1402.20 2330.50 2.03 1.02 1.45
0.4 371.06 1316.61 2286.83 378.70 1333.30 2318.10 2.02 1.25 1.35

0.4 

0.6 369.92 1213.84 2266.57 377.13 1207.20 2265.20 1.91 -0.55 -0.06
0.2 371.08 1397.73 2290.78 378.77 1412.20 2324.10 2.03 1.02 1.43
0.4 368.54 1353.49 2265.65 376.00 1371.00 2295.40 1.98 1.28 1.30

F-F 

0.7 

0.6 364.36 1286.74 2229.64 370.48 1292.60 2234.50 1.65 0.45 0.22
Note: F-H - Fixed-hinged, H-H – Hinged-hinged and F-F – fixed-fixed end conditions. 
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