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Abstract   
The paper presents an evaluation of the factors influencing fracture initiation at the boundary of a rigid test 
plate that are used to estimate the in-situ deformability characteristics of a geologic medium. The paper 
outlines the techniques that are used to perform in situ plate load tests and focuses on the problem of 
boundary fracture generation at the edges of the geologic medium. If the mechanical behaviour of the rock 
mass can be assumed to display brittle elastic behaviour, computational methods based on boundary element 
techniques can be used to examine the mode of crack extension within the elastic geomaterial. The process of 
fracture generation can influence the extent of the region being evaluated and, more importantly, this can 
adversely affect the theoretical relationships for the interpretation of test plate data. In most instances the 
boundary crack may not be visible; this is especially true if the plate load test is conducted with some 
nominal embedment. This paper discusses issues associated with the interpretation of plate load tests 
conducted as a validation of experimental data determined from plate load tests. The methodology for the 
correct interpretation of plate load tests conducted on brittle elastic materials requires knowledge of 
additional parameters governing the mechanical behaviour of the rock; this involves laboratory evaluation of 
fracture toughness data. The paper presents results concerning the influence of axisymmetric boundary 
fractures on the estimated deformability characteristics of the rock mass. 
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1. Introduction 
 
The evaluation of the effective geomechanical characteristics of complex and heterogeneous geological 
materials is best accomplished through static load tests that are conducted in-situ. A technique that has been 
used extensively in this connection is the plate loading test where a plate of known dimensions and flexural 
rigidity is maintained in contact with the surface of the geological medium under examination and is then 
subjected to an axial loading [1,2]. As the elastic stiffness of the geomaterial increases large loads are 
required to attain measurable test plate deflections. When plate load tests are conducted in galleries and adits, 
the loads needed to indent the test plate can be achieved through reaction against the walls of the gallery or 
enclosure. When plate load tests are performed on large open surfaces this facility is not available and 
recourse must be made to provide the test loads through a self stressing reaction system. The method of cable 
jacking introduces the reactive loads through an anchor region located in the medium that is being tested. 
The method was first proposed by Zienkiewicz and Stagg [3] and presents a simpler test configuration than 
that involving anchor piles and a bracing frame to accommodate the remoteness of the anchoring loads from 
the plate location. The influence of the anchor load on the resulting net settlement of the test plate was first 
examined by Selvadurai [4], who examined the problem of the interaction between a smoothly indenting 
plate and a Mindlin force [5] located at a finite depth from test plate. The analysis was subsequently 
extended to cover distributed anchor loads [6], transverse isotropy of the rock mass [7], flexibility of the test 
plate [8-11] and creep effects of the geologic medium [12]. 
In this paper we examine the problem of crack extension in a brittle elastic geologic medium during the 
indentation of the brittle elastic half-space by a cylindrical punch with a smooth flat contact surface. The 
paper discusses a procedure for locating the point of nucleation of the crack within the brittle elastic solid 
and employs a boundary element technique to locate the progress of crack evolution as the force on the 
loading device is increased [13]. The numerical results illustrate how the extent of crack development 
influences the load vs. displacement relationship for the rigid test plate. The development of boundary 
fracture is characteristic of any indentation problem involving brittle elastic materials and sharp-edged 
indenters. Results are developed for geomechanical investigations that are carried out both at the surface of a 
geomaterial and at depth. The work can also be extended to include flexibility of the plate that is applying the 
indentation loads. 
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2. Theoretical Results-Indentation 
 
The theoretical concepts that are used in the interpretation of plate loading tests conducted on brittle 
elastic geologic media are invariably based on the validity of the theory of elasticity. The analysis is 
frequently restricted to assumptions of isotropy of the rock mass, While this is considered to be a 
limitation for in situ testing, the characterization of elastic materials that are generally anisotropic 
(with 21 independent elastic constants), orthotropic (with 9 independent elastic constants), or 
transversely isotropic (with 5 independent elastic constants) [14, 15] is regarded as a difficult 
exercise even under highly controlled laboratory conditions [16]. The best that can be accomplished 
in an in situ plate loading test is to arrive at an effective deformability modulus of the region in 
which the plate load test is conducted. The simplest idealization that permits the use of an effective 
property is the assumption of isotropy of the tested region. It is relatively clear that if the geologic 
medium possesses dominant stratification then the deformability should be interpreted appropriately. 
The theoretical concepts can also be extended to include both transverse isotropy of the rock mass 
and elastic inhomogeneity of the geologic medium [17-20]; however, the inverse analysis for the 
elasticity parameter identification in these situations cannot be conducted using only the results of 
plate load tests. Even with the restrictions of isotropic and homogeneous behaviour of the rock mass, 
the results of a plate load test can only provide an overall estimate for the deformability of the rock 
mass that can include both the elastic constants encountered in the isotropic elastic model. The 
theoretical analysis of the plate load test involving no reactive anchor forces can be conducted by 
formulating the mixed boundary value problem of the indentation of an isotropic elastic halfspace 
by a rigid test plate. In order to formulate the mathematical problem, it is also necessary to identify 
the contact conditions that can be present at the interface between the test plate and the geomaterial. 
This largely depends on the condition of the test plate and the procedures used to either make the 
interface completely smooth or completely frictional, which will inhibit relative slip between the 
plate and the geomaterial. Finally, the extent of the geomaterial region that is tested is assumed to 
be large in comparison to the dimensions of the plate, enabling the region to be approximated by an 
elastic halfspace region. Reviews of contact problems of special interest to in situ plate loading tests 
are given in [21-25]. The axisymmetric mixed boundary value problem associated with the smooth 
indentation of a halfspace by a rigid circular test plate (Figure 1) is described by the boundary 
conditions               

       ( ,0) , (0, ); ( ,0) 0, [ , ); ( ,0) 0, (0, )z zz rzu r r a r r a r rσ σ= Δ ∀ ∈ = ∀ ∈ ∞ = ∀ ∈ ∞             (1) 

 

Figure 1. The classical indentation problem for a geomaterial halfspace. 
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where ( ( ,0, ))r zu u=u and σ  are, respectively, the axisymmetric versions of the displacement vector 
and the stress tensor referred to the cylindrical polar coordinate system ( , , )r zθ  and Δ  is the 
displacement of the test plate. In addition, the regularity conditions require that u and σ reduce to 
zero as either r or z →∞ . The mixed boundary value problem in elasticity defined by the set of 
equations (1) is a classical problem solved by Boussinesq [26] employing results of potential theory 
and by Harding and Sneddon [27] using the theory of dual integral equations. Details of the 
methods of solution are also given in [21-25] and [28, 29]. The result of interest to geomechanics is 
the relationship between the indentation displacement ( )Δ  and the corresponding axial 
load ( )P required to achieve the indentation. This can be obtained in exact closed form as  

(1 )
4

P
a
ν

μ
−

Δ =                                     (2) 

where μ  and ν are, respectively, the linear elastic shear modulus and Poisson’s ratio of the 
geomaterial. As is evident from (2), the classical analysis of the plate load test provides only an 
estimate of /(1 )μ ν−  and additional information is needed to determine the parameters separately. 
When the plate adheres to the surface of the geomaterial, the resulting boundary value problem is 
described by the following boundary conditions: 

( ,0) , (0, ) ( ,0) 0, [ , );
( ,0) 0, (0, ) ( ,0) 0, ( , )

z zz

r rz

u r r a r r a
u r r a r r a

σ
σ

= Δ ∀ ∈ = ∀ ∈ ∞
= ∀ ∈ = ∀ ∈ ∞

;
;                 (3) 

This mixed boundary value problem can be examined by appeal to the theory of integral equations 
where the problem can be reduced to the solution of the Hilbert problem involving singular integral 
equations. The elasticity problem of adhesive contact between a plate and an elastic halfspace 
region was examined by Mossakovskii [30] and Ufliand [31] and the exact closed form result is 
given by 

(1 2 )
4 ln(3 4 )

P
a

ν
μ ν

−
Δ =

−                 (4) 

The Hilbert problem approach accounts for the oscillatory form of the stress singularity at the 
boundary of the rigid plate. Selvadurai [32] also examined the mixed boundary value problem 
defined by (3) but by replacing the oscillatory form of the stress singularity by a regular 

2 2 1/ 2( )a r −− type singularity, thus reducing the problem to the solution of a Fredholm integral 
equation of the second-kind. It was shown that the difference between the exact result based on the 
Hilbert problem formulation and the Fredholm integral equation formulation is less than 0.5% when  

0ν = and the results converge when 1/ 2ν = . A further classical development is to consider that 
the entire surface of the halfspace is composed of an inextensible membrane, in which case the 
bonded boundary condition is automatically satisfied in the indentation zone and the shear tractions 
are non zero beyond the indented zone. The load-displacement relationship of the indenter can be 
obtained from the result for the problem of a rigid disc embedded in an elastic infinite space [33, 
34]: i.e. 

(3 4 )
16 (1 )

P
a

ν
μ ν

−
Δ =

−
                                        (5) 

It should be noted that in the limit of material incompressibility, (2) and (4) reduce to the same 
result. The analysis can be extended to include Coulomb friction at the contact zone [35] and the 
influence of depth of embedment of the test plate [36, 37]. 
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Figure 2. Conoidal boundary fractures emanating from the edge of the indented region.  

 
3. Computational Results-Indentation Fracture 
 
The region at the outer boundary of the test plate is subjected to singular stress fields due to the 
mixed boundary conditions imposed by the indentation. It can be shown that even when indentation 
is made by flexible flat test plates, the edges of the indented geomaterial will experience stress 
concentrations that are singular. The boundary of the indenter is therefore a location where 
indentation fracture can initiate. The objective of this paper is to demonstrate the influences of 
fracture development on the load displacement relationship for a rigid test plate. We consider the 
axisymmetric indentation of the surface of an isotropic elastic half-space region by a smooth flat 
rigid indenter of radius a (Figure 2). The process of crack initiation and crack extension is most 
conveniently handled using a computational approach that can model the quasi-static crack 
extension process. The analysis of crack extension during indentation can be performed via a 
variety of computational schemes. These can include either finite element methods or boundary 
integral equation methods or combinations of these. The application of finite element techniques to 
fracture extension is well established; it requires the specification of criteria both for the initiation 
of crack extension and for the location of the orientation of the crack path. These relationships 
applicable to brittle elastic fracture initiation and extension are available in the literature on fracture 
mechanics [38]. In modelling crack extension via the finite element method, re-meshing is an 
important feature that ensures accuracy of both the local and global stress fields. Adaptive 
re-meshing techniques have been used quite effectively to examine crack extension in brittle 
geomaterials such as concrete and rock [39]. An alternative to re-meshing involves extensive graded 
mesh refinement in the vicinity of the singular crack tip element and allows crack extension to take 
place at element boundaries. Alternative schemes, such as the boundary element method, provide 
greater flexibility when examining the crack extension process. The primary advantage of integral 
equation-based concepts such as the boundary element method or the displacement discontinuity 
method is that the domain rearrangement resulting from the crack extension process requires only 
an incremental change in the boundary element mesh or along the displacement discontinuity line of 
the crack extension. We shall illustrate here the application of the boundary element scheme to 
examine the process of quasi-static conoidal crack extension in the geomaterial originating at the 
boundary indenter. The application of boundary element schemes to problems in fracture mechanics 
originated with the work of Cruse and Wilson [40] and has been extended by a number investigators 
[41-43] to include a variety of problems including cracks with frictional interfaces. The review [44] 
gives a comprehensive survey of research related to boundary element formulations in fracture 
mechanics. Further details of the application of boundary element techniques to crack indentation 
problems are given in [13] and summarized here for completeness. 
 



13th International Conference on Fracture 
June 16–21, 2013, Beijing, China 

-5- 
 

3.1. Governing Equations 
 
We examine the class of axisymmetric problems where fracture extension in brittle elastic media 
satisfies Hooke’s Law and the corresponding Navier equations: i.e.                 
         2

,2 ; ( ) 0ij kk ij ij i k kiu uσ λε δ με μ λ μ= + ∇ + + =                    (6) 

and λ andμ  are Lamé’s constants and 2∇ is Laplace’s operator. The boundary integral equation 
governing axisymmetric deformations of the geomaterial region can be written as 

                        { }* * 0lk k lk k lk k
i

rc u P u u P d
rΓ

+ + Γ =∫                        (7)           

where Γ  is the boundary of the domain; ku  and kP  are, respectively, the displacements and 

tractions on Γ and *
iku  and *

ikP  are the fundamental solutions [45,46]. In (7), lkc  is a constant, 
which can take values of either zero (within the domain), / 2ijδ (if the point is located at a smooth 
boundary) or is a function of the discontinuity at a corner and of Poisson’s ratio. For axial symmetry, 
the displacement fundamental solutions take the forms  
 

        
2 2 2 4 4

*
1 3

1

4(1 )( ) (7 8 ) ( )( ) ( )
2 4rr

z R e zu C K m E m
rR r rR m

ν ρ ρ ν⎧ ⎫ ⎧ ⎫− + − − −⎪ ⎪ ⎪ ⎪= − −⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

           (8) 

                     
2 2

*
1 3

1

( ) 1( ) ( )
22rz

e zu C z E m K m
RR m

⎧ ⎫+⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

       (9) 

…etc., where 

                 

2 2 2
1

2 2 2 2 2 2
12

( ); ( ); ( ); 1
4 1( ); ; ;

4 (1 )

i i i

i
i

z z z r r r r r m m
rre r r R r z m C

R

ρ

πμ ν

= − = + = + = −

= − = + = =
−

           (10) 

and ( )K m and ( )E m  are complete elliptic integrals of the first and second-kind and ( , )r z and 
( , )i ir z  correspond to the coordinates of the field and source points respectively. The relevant 

fundamental solutions for *
lkP  can be obtained by manipulating results of the types (8) and (9). 

Upon discretization of the boundary Γ , the integral equation can be expressed in the form of a 
boundary element matrix equation  
                              [ ]{ } [ ]{ }=D U T P                                 (11) 
where [ ]D  and [ ]T  are obtained, respectively, by integration of the displacement and traction 
fundamental solutions. When considering the discretization of the boundary Γ of the domain, 
quadratic elements can be employed quite effectively; the variations of the displacements and 
tractions within an element can be described by 

                              
3

0

i n
n

i n

u
a

P
ζ

=

⎫
=⎬

⎭
∑                                  (12) 

where ζ  is the local coordinate.. Then modeling cracks that occur at the boundaries or within the 
interior of the elastic geomaterial, it is necessary to modify (12) to take into consideration the 
1/ ζ  type locally two-dimensional stress singularity at the crack tip. In contrast to finite element 
approaches that use quarter-point elements, here we utilize the singular traction quarter-point 
boundary elements [40] where the tractions can be expressed in the form 
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                              0
1 2i

cP c c r
r

= + +                               (13) 

where ( 0,1,2)ic i =  are constants. The Mode I and Mode II stress intensity factors that will be used 
in the estimation of crack growth can be determined by applying a displacement correlation 
technique, which makes use of the nodal displacement at four locations A, B, E and D and the crack 
tip (Figure 3).     

 

Figure 3. The crack tip geometry and the node locations. 

The stress intensity factors are given by 

                     I

II 0

4[ ( ) ( )] [ ( ) ( )]2
4[ ( ) ( )] [ ( ) ( )]( 1)

u B u D u E u AK
K u B u D u E u Ak l

η η η η

ξ ξ ξ ξ

μ π − + −⎧⎫ ⎪=⎬ ⎨ − + −+⎭ ⎪⎩
                     (14) 

where (3 4 )k ν= −  and 0l  is the length of the crack tip element ξ  and η  are the local 
coordinates at the crack tip. 
 
3.2. Modelling of Crack Extension 
 
The boundary element approach can be used to examine the crack extension during indentation. The 
stress state necessary to initiate crack nucleation can be obtained by using integral results for the 
stress state associated with the mixed boundary value problem defined by (1). The results presented 
by Harding and Sneddon [27] can be used for this purpose. The axisymmetric stress state is 

{ }

{ }

0 0
1 2

2
0 1 1
1 0 1

1
2

4( , )
2

4 4 ( )( , )
( 2 ) ( 2 )

4( , )
2

zz

rz

r z J J
a

r z J J J
a

r z J
a

θθ

μ λ μσ ξ
π λ μ

λμ μ λ μσ
π λ μ ρ λ μ μ

μ λ μσ ξ
π λ μ

⎛ ⎞Δ +
= − +⎜ ⎟+⎝ ⎠

⎧ ⎫Δ Δ +
= − − −⎨ ⎬+ + ⎩ ⎭

⎛ ⎞Δ +
= − ⎜ ⎟+⎝ ⎠

%
      (15) 

etc…., where 
( 1)

0

2 2 1 2 2 2 2 2

2 2

sin( ) ( )

1 ; tan ; ( 1) 4
2tan

( 1)

m n p
n mJ p p e J p dp

r R

ξ ρ

ξ θ ξ ρ ξ ξ
ξφ

ρ ξ

∞ − −

−

=

= + = = + − +

=
+ −

∫ %

%

%

               (16) 

( )mJ x  is the Bessel function of the first kind of order m and the dimensionless coordinates are 
/r aρ =%  and /z aξ = . The maximum local tensile stress within the elastic geomaterial, in the 
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vicinity of the boundary of the indenter (Figure 1) can be obtained through a computer based search 
technique. The location of the point of maximum tensile stress will be characterized by the local 
coordinates 0η  and 0ψ  and will depend only on Poisson’s ratio. This technique allows the 
location of the orientation and length of a starter crack and the boundary element meshing is 
structured to accommodate this starter crack and a semi-infinite domain (Figure 4). 
 

 
Figure 4.The location and orientation of starter crack. 

 
3.2. Onset and Orientation of Crack Extension 
 
The onset of crack extension can be based on a number of criteria applicable to brittle geomaterials. 
An elementary criterion for onset of crack extension is the attainment of a critical value of the Mode 
I stress intensity factor; i.e. 
                                     I ICK K=                                 (17) 
 
The orientation of crack extension has to take into account the influence of both stress intensity 
factors. The criterion used is that proposed by Erdogan and Sih [47]. The maximum stress criterion 
assumes that the crack will extend in the plane that is normal to the maximum stress ψψσ shown in 
Figure 4b and according to 
 
                              I IIsin (3cos 1) 0K Kψ ψ+ − =                       (18) 
   
Other criteria, such as crack extension along paths where II 0K = , are possible [48] but in this 
study the criterion (18) is used.  
 
4. Numerical Results 
 
The objective of the study is to examine the extent to which the load displacement of the rigid 
indenter is influenced by the development of boundary fracture. The results can be presented in 
relation to a load-displacement relationship for the rigid indenter, taking into account the parameters 
that control the crack initiation and extension process described previously and documented in 
detail in [13]. Figure 5a illustrates the results for the load-displacement relationship for the case 
where the orientation of the starter crack is determined from procedures outlined in Section 3.2. 
Figure 5b illustrates similar results derived by assuming a priori that the starter crack is oriented 
normal to the boundary of the indented surface. Results for the load-displacement relationships for 
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the uncracked situations are also presented for purposes of comparison. In both instances, cracking 
of the halfspace region will lead to a reduction in the elastic stiffness of the rigid indenter.       
  
 

 
                   (a)                                   (b) 

Figure 5. Influence of geomaterial cracking on the stiffness of the rigid indenter 
 
5. Concluding Remarks 
 
The objective of the study is to examine the extent to which the load displacement of the rigid 
indenter is influenced by indentation fracture that can occur beneath the surface of the region that is 
being indented. In a geomechanics context, indention testing is carried out in order to determine the 
in situ properties of the geomaterial. Studies of this type serve two purposes; first it will alert the 
user to the stress levels that can lead to the development of cracking in the indented region. Modern 
acoustic emissions monitoring could be used to supplement the experiments. Secondly, if fractures 
occur it will influence the interpretation of the in situ deformability characteristics of the 
geomaterial region. The boundary cracking will generally lead to a lower estimate of the in situ 
modulus. The methodology described here is not without constraints, the most important of which is 
the assumption that some estimates can be made of the fracture toughness of the geomaterial as 
interpreted through the critical Mode I stress intensity factor. This pre-supposes that this parameter 
can be estimated from either laboratory tests or preferably in situ fracture tests conducted by flat 
jack expansion testing of surface slots cut into the rock surface.        
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