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AbstractAbstractAbstractAbstract The thermal effect of mode III crack in a functionally graded strip under the electric shock is
investigated. This fracture analysis can be expressed through the superposition of two problem solutions. The
first solution is the dynamic behaviors of a functionally graded piezoelectric material with central crack
subjected to the electric shock. The second solution means the temperature field by calculating the power of
point heat source around the crack tip. Based on the Laplace transform and Fourier transform technique,
this mixed boundary value problems is reduced to a Cauchy singular integral equation, which is
solved numerically by the Cauchy-Chebyshev quadrature technique. Numerical results are presented
to show the effects of geometrical of crack and graded quantities of material on the stress intensity
factors.
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1111.... IntroductionIntroductionIntroductionIntroduction

Piezoelectric materials (PMs) have been widely used as a smart material in electromechanical devices
due to the demand of transform from mechanical to electrical loadings, and vice versa. To improve
the reliability and durability problems arising largely from high residual and thermal stress, poor
interfacial bonding strength, the functionally graded piezoelectric materials (FGPMs) as a new class
of advanced composites have been developed.
Recently, some researchers start to investigate the fracture behavior in FGPMs. Wang and Node [1]
firstly studied the thermo-piezoelectric fracture problem of a functionally graded piezoelectric layer
bonded to a metal. They obtained the thermal flow, stress and electric displacement intensity factors
and predict the direction of crack extension by using the energy density theory. Wang considered the
mode III crack problem in FGPM, where the material properties are assumed in a class of functional
form such that an analytic solution is possible. Recently, Li and Lee [2] investigated the fracture
behavior of a weak discontinuous interface between two piezoelectric strips under electro-mechanical
loads by using the methods of Fourier integral transform and Cauchy singular integral equation. Ding
and Li [3] studied the problem of periodic interface cracks in a functionally graded coating-substrate
structure. Recently, based on the methods of variable separation and singular integral equation, Ref.
[4] investigated the arc-shaped interfacial cracking problem in a hollow cylinder that consists of an
inner orthotropic dielectric layer and an outer functionally graded piezoelectric layer.
Although a variety of challenging issues related to certain crack problems in the functionally graded
piezoelectric materials have been addressed, one of the remaining problems that need to fully
understand is that FGPMs belongs to the dielectric material. Research of Bilyk et al [5] revealed that
applying high current on the conductor, the temperature of conductor is lager than the temperature
just under force load. To the authors' knowledge, few papers considered the solution for the problem
of the heating effect of the crack tip in FGPM under electric shock. Then, this paper discusses the
heating effect of the crack tip on piezoelectric medium under the high electric shock load.
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2.1 Theoretical model

The thermal effect of mode III crack in a functionally graded strip under the electric shock is
investigated. This fracture analysis can be expressed through the superposition of two problem
solutions. The first solution refers to the dynamic behaviors of a functionally graded piezoelectric
material with central crack subjected to the electric shock. The second solution means the
temperature field by calculating the power of point heat source around the crack tip. Illustrated in
Fig.1 is the fracture model of a functionally graded piezoelectric strip which is assumed to contain a
center crack. The crack of length and the thickness of strip are defined as 2c and 2h . In addition, the
rectangular coordinate system is established as fig 1. Since the poling directions of piezoelectric
materials are orientated along z -axis, the antiplane mechanical field and inplane electric field are
coupled. Here, the fundamental solution of crack under a pair of the equivalent electric shock 0 ( )D H t-

and shear traction 0 ( )H tt- acting on the crack surface is considered. )(tH is Heaviside function,
and 0τ , 0D are the range of the impact load of force field and electric field.

Figure 1. Functionally graded piezoelectric strip with central crack subjected to the electric shock

In fracture analysis of functionally graded piezoelectric strip, for the convenience of employing some
standard methods such as Fourier transforms and integral equations, material properties are always
assumed to be continuous functions of spatial coordinates, among which the most widely used one is
exponential function [4]. Therefore, like many previous literatures, the properties of the functionally
graded piezoelectric strip are assumed in power forms along y axis as follows:

yecc β
044 = ， yeee β

015 = ， yeβκκ 011 = ， yeβρρ 0= (1)
where 0 0 0 0, , ,c e k r are the coefficient of the functionally graded strip at y=0, such as shear modulus,
piezoelectric coefficient, dielectric permittivity and density permeability, respectively. β is the
non-homogeneity parameters controlling the material coefficient in the graded layer.

2.2 Governing equations

Firstly, without considering the related effect of temperature field, a theoretical model is developed
for the dynamic fracture analysis of a functionally graded piezoelectric material of a finite dimension
with central crack subjected to the electric shock. Under axial shear deformation, the constitutive
relations can be expressed in terms of polar coordinate system in the form
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where f and w denote the electric potential and anti-plane mechanical displacement, D and s

are the electric displacement and anti-plane stresses, respectively.
The geometric equation can be written as
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Under the static condition, when body forces and body charges are omitted, the stress, electric
displacement should satisfy the following equations
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Introduce an auxiliary function by

ω
κ

φψ
0

0e
−= (5)

Substituting Eqs. (1-3) into Eq. (4) yields the decoupled governing equations in the piezoelectric strip
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where
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2.3 Boundary conditions

The upper region [0, ]y hÎ and lower region [ ,0]y hÎ - is symmetric with respect to the x axis.
Therefore, in the following we confine our attention to the upper region [0, ]y hÎ . Then, based on the
symmetry, the corresponding boundary conditions are imposed

0),0,( =txω ， 0),0,( =txφ )|(| cx > (8)
Here, the fundamental solution of crack under a pair of the equivalent electric shock 0 ( )D H t- and
shear traction 0 ( )H tt- acting on the crack surface is considered. The corresponding mechanical
boundary conditions on the crack surface are imposed

)(),0,( 0 tHtxyz τσ −= ， )(),0,( 0 tHDtxDy −= )( cxc <<− (9)
Assume that the upper surface hy = is free of loading. Therefore, the electric displacement and
anti-plane stresses on the upper surface is taken as zero,

0),,( =thxyzσ ， 0),,( =thxDy )( +∞<<−∞ x (10)

3.3.3.3. SolutionSolutionSolutionSolution

3.1 Basic solution expression

Using the Laplace transform and Fourier transform technique, ones can transform Eqs. (6) into a
system of decoupled differential equations



13th International Conference on Fracture
June 16–21, 2013, Beijing, China

-4-

),,(),,(),,(),,()( 2
02

2
2 pysFpspysF

y
pysF

y
pysFs =

∂
∂

+
∂
∂

+− β (11)

0),,(),,(),,()( 2

2
2 =

∂
∂

+
∂
∂

+− pysG
y

pysG
y

pysGs β (12)

where

∫∫ ==
+∞ −

Br

ptpt dpepyxtyxdtetyxpyx ),,(),,(,),,(),,( *

0

* ψψψψ (13)

∫∫ ==
+∞ −

Br

ptpt dpepyx
i

tyxdtetyxpyx ),,(
2
1),,(,),,(),,( *

0

* ω
π

ωωω (14)

∫∫
+∞

∞−

+∞

∞−

− == dxepyxpysFdsepysFpyx isxisx ),,(),,(,),,(
2
1),,( ** ω
π

ω (15)

∫∫
+∞

∞−

+∞

∞−

− == dxepyxpysGdsepysGpyx isxisx ),,(),,(,),,(
2
1),,( ** ψ
π

ψ (16)

where ),,(),,,( ** pyxpyx ψω are the Laplace transform of ),,(,),,( tyx tyx ψω , Br means path
integral Bromwich formulation. And ),,(),,,( pysGpysF are the Fourier transform of

),,(),,,( ** pyxpyx ψω .
Afterwards, solving Eqs. (11-12), one can finally express the mechanical displacement, electric
potential of the strip in the Laplace domains below
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There are four unknown functions 4,3,2,1),,( =ipsAi which can be solved by considering the

boundary conditions and continuity conditions which are formulated by Eqs. (8-10).
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3.2 Transformation to singular integral equation

In order to derive the singular integral equation, two dislocation density functions are introduced as
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Substituting Eqs. (17-19) into Eq. (8), and considering Eqs. (21-22), one can obtain the following
relation
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Substituting Eqs. (2) (17-19) into Eq. (10), it yields

0]),(),([]),(),([)( 4321
443302211

0

2
0

0 =++++ hththhthth epsAtepsAteeepsAtepsAteec ββ

κ
(25)

0]),(),([]),(),([2 4321
4433022110 =+++ hththhthth epsAtepsAteepsAtepsAtee ββ κ (26)

One can finally obtain the following relations form Eqs. (23-26)
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where
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Then, substituting Eqs. (2) (27-29) into Eqs. (2), the basic solution expression of the electric
displacement and anti-plane stresses is obtained. And then, substituting the electric displacement and
stress component into Eq. (8), one arrives at an integral equation in the form [6]
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Because of the symmetry of fracture analysis, the dislocation density function ),(),,( pu puF must
be an odd function of u . Then, it is automatically satisfied

0),0(,0),0( ** == pgpf (34)

3.3 Numerical solution

Introducing rcxuct == , , ),(),(),,(),( ** puGptgpuFptf == , )2,1,)(,,(),,( * == jipruKptxK ijij ,
Eqs. (30-31) and (34) can be transformed into the standard form of the first kind Cauchy singular
integral equations as
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According to the theory of singular integral equation, the solution of ),( puF 和 ),( puG may be
expressed as [6]
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Based on the Cauchy-Chebyshev collocation method, Eqs. (35-37) are reduced into a system of
algebraic equations [6]
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Solving Eqs. (40-41) and taking (42) into account, the numerical values of the function
),( puR l and ),( puS l can be obtained. Furthermore, the values of the function ),( puF and ),( puG

can be obtained numerically. Thus, after obtaining the solutions f , g from the Eqs. (19), we may
obtain the four unknown functions 4,3,2,1),,( =ipsAi from Eqs. (27-28), furthermore, the
mechanical displacement, electric potential of the strip in the Laplace domains will be obtained from
Eqs. (17-19).

3.4 Temperature field of the crack tip

Research of Bilyk et al [5] revealed that applying high current on the conductor, the temperature of
conductor is lager than the temperature just under force load. Then, this paper discusses the heating
effect of the crack tip on piezoelectric medium under the high electric shock load. Secondly, within
supposing that it is a heat insulation process in a short time, and thermal field and electromechanical
filed is decoupled, the thermal effect is calculated. according to ref. [5] which shows that
electromagnetic field diffusion time scale is far less than the heat conduction time scale under action
current load, the this process can be approximated as adiabatic process, so this assumption is
established.

app:ds:heat
app:ds:insulation
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In accordance with the above assumptions, under the adiabatic conditions, the first approximation of
heat conduction equation of the piezoelectric materials is

t
Tcp
∂
∂

= 0 (44)

where 0c denotes specific heat capacity.
For there is no external heat source, according to the ref. [7] of the electric shock which can retard
effectively crack propagation, the heat source power can be introduced to the function of equivalent
external point heat source

JEp ⋅= (45)
where J denotes the electric current density vector field of the dielectric materials.
Current density vector of the dielectric material can be expressed as

t
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∂
∂

= (46)

Functionally graded piezoelectric material belongs to the dielectric material. Similarly, introducing
power of heat source, temperature field of piezoelectric medium is obtained from the time integration
of expression which can be obtained by substituting (45-46) into expressions of (44),
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Furthermore, the solution of electric field strength and electric displacement intensity in the Laplace
transform domain is
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The solution of electric field strength and electric displacement intensity in the time domain are
calculated by Laplace numerical inversion method. Furthermore using Eq. (48), the temperature field
of the crack tip is obtained.

4.4.4.4. NumericalNumericalNumericalNumerical ExamplesExamplesExamplesExamples andandandand discussionsdiscussionsdiscussionsdiscussions

In the numerical computation, the functionally graded piezoelectric strip layer is assumed to be a
non-homogeneous BaTiO3 composite and the material constants of 0=y are

Gpac 4444 = ， 2
15 /4.11 mCe = ， VmC /103.128 10

11 ×=κ ， 3/5700 mKg=ρ (65)
Here, the fundamental solution of crack under a pair of the equivalent electric shock 0 ( )D H t- acting
on the crack surface is considered strongly, so it assume that 00 =τ .
Fig. 2 show the the temperature field around the crack tip versus the value of time. It is indicated that
the effect of time on the temperature field is simple, i.e., when 4/1,3/1,2/1/ =hc are specified, the
temperature field increases drastically as time increases from 0 to 3. However, when time is larger
than 3, the temperature field gradually decrease with time, finally, stabilized. It is also observed that
the temperature field increases with the hc / increasing.
Fig. 3 depict the variation of the the temperature field around the crack tip versus the
non-homogeneity parameter β . When time is small (t<2), the temperature field decreases as β
increases; but when time is larger than 2, the temperature field increases drastically as β increases.
Meanwhile, it is obviously indicated that when time is larger (t>2), the effect is larger than that when
time is small (t<2). The above results show that the crack tip will cause high temperature change
under high electric shock load. In this case, the crack tip temperature effect cannot be ignored
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Figure 2. The temperature field around the crack tip versus time ( 5.0=β 0 0τ = ，
4

0 5 10D = × )

Figure 3. The temperature field around the crack tip versus parameter β ( ch 5.0= ， 0 0τ = ，
4

0 5 10D = × )

5.5.5.5. ConclusionsConclusionsConclusionsConclusions

Research of Bilyk et al [5] revealed that applying high current on the conductor, the temperature of
conductor is lager than the temperature just under force load. Then, this paper discusses the heating
effect of the crack tip on piezoelectric medium under the high electric shock load. The thermal effect
of a mode III crack in a functionally graded strip under the electric shock is investigated. This
fracture analysis can be expressed through the superposition of two problems. The first problem
refers to the dynamic behaviors of a functionally graded piezoelectric strip with central crack
subjected to the electric shock. The second problem means the temperature field by calculating the
power of point heat source around the crack tip.
Firstly, without considering the related effect of temperature field, a theoretical model is developed
for the dynamic fracture analysis of a functionally graded piezoelectric strip of a finite dimension
with central crack subjected to the electric shock. The Laplace transformation and the Fourier
transforms are applied to make the transient problem tractable, and singular integral equations is
derived with the dislocation density functions of crack as the unknown functions. In particular, the
closed-form expressions for the electric field intensity and electric displacements intensity in terms of
fundamental functions are derived, which provide a scientific basis for the interpretation of the
thermal effect. Secondly, within supposing that it is a heat insulation process in a short time, the
thermal effect is calculated. For this problem, thermal field and electromechanical filed is decoupled.
So the heat conduction equation contains no electromechanical quantity. Based on that the

app:ds:heat
app:ds:insulation
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temperature of conductors increases when high voltage is applied and that the electric field intensity
and electric displacements intensity is obtained in the first solution. The power of point heat source of
functionally graded piezoelectric strip is deduced. Therefore, from the time integration of power
equations of point heat source, the temperature field around the crack tip is calculated.
It is worth noting that the problem of a cracked functionally graded piezoelectric strip under electric
shock is a mix mode crack problem. The first problem is an electromechanical coupling problem.
And the second problem is the temperature field around the crack tip, which is the basis problem of
mode I or II heat crack analysis.
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