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AbstractAbstractAbstractAbstract The finite element model of straight attachment lug subjected to axial or oblique loading is built by
using finite element software, a cosine pin-bearing pressure distribution is applied on the pin-hole squeeze
surface as a boundary condition. The stress intensity factor (SIF) expressions for single through-the-thickness
crack in straight attachment lug that subjected to axial or oblique pin-load less than 45 degrees are determined
and validated. The fatigue crack growth rate da/dN and the stress intensity factor range ΔK are obtained by
using the fatigue crack growth test data and the SIF expressions. The fatigue crack growth model of the typical
straight lugs is established by using the Paris law, offering an analytical as well as experimental method for
assessing and designing damage tolerant attachment lugs.
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1111.... IntroductionIntroductionIntroductionIntroduction

Attachment lugs are one of the most fatigue-and fracture-critical components in modern engineering
structures[1]. In aircraft structures, lug-type joints are frequently used to connect major structural
components or in linkage structure, theirs failure can result in disastrous accidents. In the study of
fatigue crack growth and fracture behavior of attachment lugs, an accurate calculation of the stress
intensity factor is essential. There are a number of different methods for determining SIF, K, for crack
in aircraft attachment lug.
Over the years, several extensive studies have been made on lug fatigue performance, involving both
experimental and analytical means. Liu and Kan[2] and Kirkby and Rooke[3] used the simple
compounded solution method which involves superimposing known solutions, such as in Reference [4]
to estimate the stress intensity factors. Schijve and Hoeymakers[5] and Wanhill[6] derived empirical
K-solutions from the growth rate data for through cracks under constant amplitude loading using a
backtracking method such as that proposed by James and Anderson[7]. Pian, et al[8], used the hybrid
finite element method to compute the K-values for cracks oriented in various angles from the axial
direction of straight lugs. Aberson and Anderson[9] used a special crack-tip singularity element to
compute the stress intensity factors for a crack in a nonsymmetrical aircraft lug of an engine pylon.
Impellizzeri and Rich[10] modified the exact weight function derived by Bueckner[11], for an edge crack
in a semi-infinite plate, to include a series of geometry correction factors. Then they computed the
K-values using the weight function method. However, at the aspect of damage tolerance design and
analysis, only the situation of straight lug subjected to axial pin loading can be solved. For the straight
lug and symmetric tapered lug, which are subjected to axial, oblique and transverse pin loadings, there
is a lack of methods for ascertaining the crack propagation characteristics and residual strength. So, it
is important to develop analytical as well as experimental procedures for assessing and designing
damage tolerant attachment lugs to ensure the operational safety of aircraft[12], and to calculate the
stress intensity factors (SIFs) in different geometric parameters and load conditions.
Most of the researches made the assumption that the assumed or computed pin-bearing pressure
distribution for an uncracked case remains unchanged even after the crack has initiated and
propagated. Based on the parametric study conducted in Reference [8], it was found that, for any
given crack length, the difference in the SIF computed using the uniform and cosine pin-bearing
pressure distributions was as much as 30 percent. Therefore, it is salient that the correct representation
of the pin-bearing pressure distribution during the crack growth process is essential to the calculation
of accurate stress intensity factors.
This paper presents a systemic study of the 30CrMnSiA straight attachment lug’s fatigue crack growth
behavior using the finite element software ANSYS. The finite element model of the lug is established



and the effect of geometric parameters on SIF is calculated and analyzed by the finite element method
(FEM) with linear elastic assumptions, as in essence, the fatigue crack growth is brittle and it is often
based on Linear Elastic Fracture Mechanics (LEFM) assumption[13]. The fatigue crack growth test and
residual strength test are carried out by the material test system MTS-810, the test data validate the
finite element analysis and are used to determine the constants C&m of the Paris Law. The fatigue
crack growth model of the typical straight lugs is established, offering an analytical as well as
experimental method for assessing and designing damage tolerant attachment lugs.

2.2.2.2. FiniteFiniteFiniteFinite EEEElementlementlementlement MMMModelingodelingodelingodeling andandandandAAAAnalyzingnalyzingnalyzingnalyzing

2.1. Finite element modeling and meshing

Figure 1 shows the size of the straight lug discussed in this paper, millimeter is used as the length unit.
The length of the single through-the-thickness crack is a. The model is meshed with PLANE 183
triangular element, the real constant for “plane stress with thickness” is set to 6.7. The elastic modulus
is 200Gpa and the Poisson ratio is 0.3. The node at the crack tip is defined as a singular point and
there are 12 triangular elements around it. The radius of the 1st row of elements is a/10. The global
elements edge length is set to 2. Figure 2 & Figure 3 show the mesh result.
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Figure 1. Size of the straight lug Figure 2. Mesh of the straight lug Figure 3. Mesh of the crack tip

2.2. Setting boundary conditions and applying cosine distributed load

Pin load is transferred by squeezing between the lug and the pin matched. Load and stress are
supposed to keep unchangeable along the thickness of the hole. The pressure distributed on the
squeeze surface follows the cosine distribution law, and the radial load Pi at the point i on the squeeze
surface is equal to

iP γcos0
[14], as shown in Figure 4.

The x and y axis components of the load Pi are as follows.
iixi PP γsin= , (1)

iiyi PP γcos= . (2)
The resultant force along y axis is shown as follow.

iiiyi PPPP γγ 2
0 coscos ∑∑∑ === . (3)

The cosine distributed nodal force is applied on the nodes on the surface ABC. All the nodes on the
symmetry plane of the lug are selected and the displacement values are set to zero. Figure 5 shows the
boundary conditions.
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Figure 4. Pin-loading on the squeeze surface Figure 5. Boundary conditions
2.3. Results analysis

Figure 6 and Figure7 respectively show the Von Mises stress distribution around the lug’s hole and the
crack tip.

Figure 6. Stress distribution around the lug’s hole Figure 7. Stress distribution around the crack tip

SIFs of cracks with different lengths are calculated by three methods. Case 1 uses the equation that is
used for estimating the straight lugs’ critical load in [15] (see formula (4)) to calculate the SIFs. Case
2 uses the configuration factor J41L in [15] (see Figure 8) to get the SIFs’ values. This paper calculates
the SIFs by finite element method, and the results are shown as case 3 in Figure 9 to compare with the
other two cases.
In reference [15] (page 270), it is indicated that the critical load [P]c of the attachment lug subjected to
axial pin-load is

a
tKRP C
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In reference [15] (page 139), the SIF of attachment lug subjected to axial pin-load is equal to
aJK L πσ ⋅⋅= 41 . (9)

where the configuration factor J41L can be determined by using Figure 8.
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Figure 8. The configuration factor J41L curves Figure 9. Comparison of the stress intensity factors

3333.... CalculationCalculationCalculationCalculation ofofofof thethethethe SIFSIFSIFSIF equationsequationsequationsequations

The geometric parameters of the lug are wrote to the APDL program text file and executed by ANSYS
to solve the SIFs automatically and efficiently. The case of the straight attachment lug subjected to
axial pin-load is taken as an example for illustrating the approach. Figure 10 shows the parameterized
geometry of the lug.
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Figure 10. Geometry of the straight attachment lug

The influence law of the dimensionless crack length (a/R1), the ratio of outer radius to inside radius
(R2/R1) and the inside radius (R1) on the SIF are studied, and then, the equation (4) is modified to fit
the SIF equation for the straight attachment lug with a single through-the-thickness crack.
Table 1 shows the solving idea. K, K1, K2, K3 stand for the SIFs calculated by equation (4) and
represent the values that need to be modified by the influence law of a/R1, R2/R1 and R1 respectively.
K′ stands for the SIF calculated by ANSYS as the reference exact value for modifying K1, K2, K3.

Table 1. Solving the SIF equation of the straight lug subjected to axial pin-load
Variate Invariants K K′ (K′)i/Ki Calculating process

(a/R1)1 R2/R1, R1 (K1)1 (K′)1 (K′)1/( K1)1
(a/R1)i is set as the variate, while (K′)i/(K1)i as the

dependent variable, function g(a/R1) can be fitted as
below.

K2=K1·g(a/R1) (10)

� � � � �

(a/R 1)n R 2/R 1, R 1 (K 1)n (K′)n (K′)n/(K1)n

(R2/R 1)1 a/R 1, R 1 (K 2)1 (K′)1 (K′)1/(K2)1 (R2/R1)i is set as the variate, while (K′)i/(K2)i as the
dependent variable, function f(R2/R1) can be fitted as
below.

K3=K2·f(R2/R1)= K1·g(a/R1) f(R2/R1) (11)

� � � � �

(R2/R 1)n a/R 1, R 1 (K 2)n (K′)n (K′)n/(K2)n

(R 1)1 a/R 1, R 2/R 1 (K 3)1 (K′)1 (K′)1/(K3)1
(R1)i is set as the variate, while (K′)i/(K3)i as the

dependent variable, function h(R1) can be fitted.
Finally the straight attachment lug’s SIF equation can

be obtained as below.
K=K3·h(R1)=K1g(a/R1)·f(R2/R1)·h(R1)

=K1F(a/R1,R2/R1, R1) (12)

� � � � �

(R 1)n a/R 1, R 2/R 1 (K 3)n (K′)n (K′)n/(K3)n
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The value of a/R1 is increased from 0.1 to 1.6 by 0.1 while the others are fixed, K1 can be modified
as K2=K1*g(a/R1), where

g(a/R1)=-0.1285*(a/R1)2+0.3059*(a/R1)+0.8228 (13)

The value of R2/R1 is increased from 1.5 to 3 by 0.1 while the others are fixed, K2 can be modified
as K3=K2*f(R2/R1), where

f(R2/R1)=-0.1654*(R2/R1)4+1.6326*(R2/R1)3-6.0293*(R2/R1)2+9.9046*(R2/R1)-5.1399 (14)

The value of R1 is increased from 5 to 20 by 1 while the others are fixed, the function h(R1) can be
obtained as h(R1)= 0.99, it is obvious that the effect of R1 on SIF is less than the other parameters.
Finally we can obtain the modified straight attachment lug’s SIF equation as K=K3*h(R1), the SIF
equation of straight lug (Figure 10) is obtained as blows.

aFK ⋅⋅⋅= πσ . (15)
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In the same way, considering the load degrees β additionally, the SIF equation of the straight
attachment lugs subjected to oblique pin-load less than 45 degrees can be obtained as below.

aFK ⋅⋅⋅= πσ (22)
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4444.... FatigueFatigueFatigueFatigue ccccrackrackrackrack ggggrowthrowthrowthrowth ttttestestestest andandandand rrrresidualesidualesidualesidual sssstrengthtrengthtrengthtrength ttttestestestest

4.1 Test pieces

Figure 11 shows the dimensional drawing of the straight attachment lug piece. There is a small slot
made by electrical discharge machine (EDM) besides the lug hole with an angle of θ=90° or θ=60°.
The slot length a0 is approximately equal to 1mm. The lugs pieces subjected to axial (θ=90°) or 30
degrees oblique (θ=60°) pin-load are all made of 30CrMnSiA material, 4 pieces for each case.

R1 0

R2 2 .5

a0

Symmetry line

45

6 5
8 7 .5

θ

Figure 11. Geometry of the test piece

4.2 Test equipments and loading requirement

The tests are carried out on the material test system MTS-810 (load relative error <±2%) with a
constant amplitude loading spectrum of sine waveform. The length of the crack is observed and
measured by JXD-250mm scale microscope with a precision of 0.01mm.
Surface around test piece’s wire-cutting slot tip is polished by a sand paper along the direction
perpendicular to the slot direction. Peak load Ppp in the crack growth preparation test is 13.85KN,
valley load Ppv is 0.83KN, R=0.06, load frequency is 5Hz. A crack with a length of 0.314mm was
observed when fatigue cycle reaches about 15000, and grows to 0.612mm when 21000 cycles. The
a-N data shows that the crack is growing steadily under the peak load of the fatigue crack growth
test Pp=20.77KN and the valley load Pv=1.246KN.
Table 2 shows values of the test load.

Table 2. The test load values
Case Ppp/(KN) Ppv/ (KN) Pp/(KN) Pv/(KN)

θ=90° 13.85 0.83 20.77 1.25
θ=60° 13.85 0.83 20.77 1.25
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4.4.4.4.3333 FatigueFatigueFatigueFatigue crackcrackcrackcrack growthgrowthgrowthgrowth testtesttesttest

Figure 14 & Figure 15 show the experimental scene.

Figure 14. Experimental field of the case of θ=90° Figure 15. Experimental field of the case of θ=60°

The micro objective is aimed at the wire-cutting slot tip for detecting the fatigue crack in time. The
frequency is changed to 1Hz every other 1000~2000 cycles in order to observe the crack length and
record the a-N data.

4.4.4.4.5555 ResidualResidualResidualResidual strengthstrengthstrengthstrength testtesttesttest

After obtaining enough a-N data, the test pieces with different residual fatigue crack lengths are
loaded with a sustained increasing load till the test pieces fracture, the corresponding residual
strength data are recorded in Table 3 & Table 4.

Table 3. The residual strength test results of the lugs subjected to axial pin-load
test piece num. No.1 No.2 No.3 No.4
crack length a/(mm) 7.109 8.127 8.972 10.115
residual strength P/(KN) 91.456 83.242 78.051 72.947

Table 4. The residual strength test results of the lugs subjected to 30 degrees oblique pin-load
test piece num. No.1 No.2 No.3 No.4
crack length a/(mm) 10.58 10.99 11.45 9.98
residual strength P/(KN) 58.54 42.38 40.24 58.8

The data of crack length a and corresponding residual strength P in Table 4 & Table 5 are used to
substitute the a&P in formula (15) and formula(22) to calculate the SIFs. The SIFs of the axial
pin-load case are: 164.30, 162.47, 166.37, 184.04, while the other case’s SIFs are: 214.91, 162.08,
171.77, 179.69, the unit is mMPa ⋅ . As the fracture toughness of the material 30CrMnSiA with
thickness 6.7mm is around 180 mMPa ⋅ [16], it shows the SIFs calculated by formula (15) and
formulas (22) are consistent with the true values.

5.5.5.5. EstablishmentEstablishmentEstablishmentEstablishment ofofofof tttthehehehe ffffatigueatigueatigueatigue ccccrackrackrackrack ggggrowthrowthrowthrowth mmmmodelodelodelodel

The fatigue crack growth data are fitted by using least square method, the curves are shown in
Figure16 and Figure 17.



13th International Conference on Fracture
June 16–21, 2013, Beijing, China

-8-

Figure 16. a-N curves of the case of axial pin-load Figure 17. a-N curves of the case of 30° pin-load

The a-N data are calculated by the seven points incremental polynomial method[16]. The SIF range
value ΔK and da/dN can be obtained by the fitted crack length value a*. Table 5 shows the data
processing of the test piece No.1.

Table 5. Data processing of the test piece No.1
N/(cycle) a /(mm) a*/(mm) da/dN ΔK/(MPa·m1/2) lg(da/dN) lg(ΔK)
0 1.539
2000 1.967
4000 2.276
6000 2.506 2.579 1.79E-7 26.556 1.424 -6.746
8000 2.958 2.927 1.85E-7 27.292 1.436 -6.732
10000 3.307 3.316 2.01E-7 28.026 1.447 -6.697
12000 3.767 3.752 2.14E-7 28.781 1.459 -6.669
14000 4.159 4.186 2.16E-7 29.497 1.469 -6.665
16000 4.652 4.629 2.24E-7 30.218 1.480 -6.649
18000 5.091 5.074 2.31E-7 30.956 1.490 -6.636
20000 5.503 5.543 2.43E-7 31.771 1.502 -6.614
21800 5.981 5.976 2.47E-7 32.577 1.512 -6.608
23000 6.291 6.278 2.59E-7 33.180 1.520 -6.585
24000 6.578
25000 6.756
26000 7.109

The da/dN data of the other three test pieces can be obtained by the same method. The data points
of region II are fitted by the least square method to get the lg(da/dN)~lg(ΔK) curve. Figure18 shows
the fitted line of the data points.
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The equation of the line is shown as below.
7221.8)lg(4231.1)/lg( −∆⋅= KdNda . (31)

The Paris equation is
mKCdNda )(/ ∆= . (32)

In order to get the values of C and m, the paper takes the logarithm on both sides of the equation
(32).

CKmdNda lg)lg()/lg( +∆⋅= . (33)

The values of the Paris constants C and m are obtained by comparing the equation (31) with (33).
C=1.896E-09, m=1.4231.

The lg(da/dN)~lg(ΔK) curve of region II of the lugs subjected to 30 degrees oblique pin-load can be
got by the same method. Figure 19 shows the lg(da/dN)~lg(ΔK) curve.
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Figure 19. lg(da/dN)~lg(ΔK) curve of the 30 degrees oblique pin-load case

The equation of the line and the values of the Paris constants C and m are shown as below.
7.8902-)lg(7649.0)/lg( KdNda ∆⋅= (34)

C=1.2877E-08, m=0.7649.

6.6.6.6. ConclusionsConclusionsConclusionsConclusions

Analytical and experimental investigations for fatigue crack growth behavior of 30CrMnSiA
straight attachment lugs were performed. From this investigation followings are concluded.
1. The boundary conditions of the finite element model is consistent with the true condition, cosine
distributing load is the key of ensuring precision of FEM analysis.
2. The expressions of the SIFs of straight lugs subjected to axial or less than 45 degrees oblique
pin-load are determined and validated. Based on this, the stress intensity factor range (ΔK) can be
calculated.
3. The fatigue crack growth model of the typical straight lugs is established, offering an analytical
as well as experimental method for assessing and designing damage tolerant attachment lugs in
engineering.
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