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Abstract Fatigue life computing methods are generally 8ase putting into equation the mechanical
quantities calculated at the micro or meso schierelevance of these selected quantities beindatat by
the capacity of the models to reproduce experinheasalts at the macroscopic scale. Although tlairsg

of the damage mechanisms involved in fatigue craitiation processes are relatively well identifiggtain
scale, slip bands), their explicit consideratiorfatigue criteria is still not well-developed. Fugtmore, the
existing methods do not consider the microstruesaresitivity. The aim of this paper is to presem t
computational strategies developed to accounthi®miicrostructure-sensitivity in the calculationfafigue
strength. This work is based on three parts: (&@)dévelopment of 3D microstructure modeling to@lstlie
analysis of the dispersion induced by the micrastme heterogeneities on the critical fatigue dasnag
indicators and (3) the development of a statistagghroach which provides a framework for analyzing
calculation results in the HCF (High Cycle Fatigusgime.

In this context, a method based on the construatiostatistical extreme value distributions fromA-E
calculation results was developed. The evolutiothefscaling parameters of these distributiongliiberent
loading conditions is related to the effect of mayoportional loading and microstructure. A desigetimod
based on these extreme value statistics is prebdatebtain a new mesoscopic criterion sensitive to
microstructure parameters. Finally, surface effaotsdiscussed.

Keywords HCF, crystal plasticity, extreme value probawilEE simulation.

Abbreviation and designation

HCF: High Cycle Fatigue

FIP: Fatigue Indicator Parameter

RVE: Representative Volume Element

SVE: Satistical Volume Element

GEV: Generalized Extreme Value distribution

Microscopic length scale:  corresponding to the integration points
Mesoscopic length scale:  Corresponding to the average density in a grain
Macroscopic length scale:  Corresponding to the el ementary volume average

1. Introduction

In literature, methods for determining the fatidughavior based on multiscale modeling estimate
that the fatigue strength of metals depends orxtreme value statistics of a single microstructure
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attribute [1] (for example inclusion size). This esly valid when the considered element of
microstructure is a representative volume elem8WE) with regards to fatigue. Although the
definition of the RVE is possible for some deteristic behaviour aspects (such as elastoplastic
behaviour), it is difficult to evaluate a RVE fdret HCF strength which is macroscopically highly
dispersed. Therefore the use of a single micrastrecelement (with a smaller volume than the
RVE with regards to the fatigue behaviour but eqtmlthe RVE size with regards to the
elastoplastic behaviour) does not make it posdibléake into account the contribution of the
microstructure heterogeneities in the HCF respomgesolve this issue, Liao [2] used the Monte
Carlo method to build statistical volume elemenWVE$ of a microstructure with a random
distribution of grain sizes and crystallographientations. Despite considering elastic behavidur o
crystal only, Liao showed a good correlation betwte results obtained by modeling the extreme
value probability with a Fréchet distribution angerimental results. Recently, Przybyla et al4[3,
introduced a new framework taking into account eéffects of neighborhood through the extreme
values of the marked correlation functions to gifiatihe influence of microstructure on the fatigue
limit and the contribution of interactions in theicnostructure in the case of uniaxial loading.
Przybyla used Gumbel distribution function to déseithe extreme value probability of the studied
parameters.

The purpose of this work is, first, to analyze tmécrostructure sensitivity (morphology and
orientation) of the fatigue indicator parameterRFtorresponding to the adaptation of multiaxial
fatigue strength criteria at the mesoscopic lesgtie. Then a statistical study is used to defeve n
mesoscopic thresholds for the FIPs, different friira original thresholds of the macroscopic
criteria. Finally, the capability of the macrosaoriteria to take into account the microstructure
sensitivity will be discussed through a comparidmiween the thresholds determined by the
statistical response of the microstructure at trengscale (called mesoscopic) and the original
macroscopic thresholds. Free surface effects amediscussed with the comparison between FIPs
determined from different FE models: 2D, 3D andt8King into account the grain surface only.

2. Numerical mode€
2.1. Constitutiverelations

The material parameters considered in this workthose of pure copper. This material has a
face-centered cubic crystal structure with 12 sjiptems (<111> {110}). The behaviour is modeled
by cubic elasticity and crystal plasticity congiite law. The crystal plasticity model used in this
work is the one introduced by Meric and Cailletdbd The cubic elasticity constants, the material
parameters and the coefficients of the interaagtiatrix have been identified on a high purity copper
by Gérard et al. [6].

2.2. Grain mor phology and crystallographic texture

The simulations performed in this study were dorstngi 3D semi-periodic microstructures
(periodicity along X and X» directions). The Voronoi polyhedra method was usediodel the
morphology of the grains. The initial domain (wdhmensions =1, %=1 and %=0.5) is filled by
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randomly positioned and oriented germs so as te lzadistance greater than or equal to 0.02
between two germs. The CAD model was discretizedudoynd to 5.10linear tetrahedral finite
elements (figure 1-(b)). Computed microstructuratams 200 equiaxed grains (figure 1-(a)) with
an average of 2500 finite elements per grain. Iditenh to loading, periodicity conditions were
applied on the planes corresponding tonii, X;max, Xomin and Xmax. To take into account the
free surface effect, the symmetry conditions wemaliad on the face corresponding tenXn. The
grain number on the free surface (corresponding{gmax) is about 50. Finally, the random
selection of 200 crystal orientations was carriatio the Euler space defined by the three angles

(¢,.¢.¢,) assuming cubic crystal symmetry and triclinic peersymmetry. Figure 1-(c) shows the

{100} and {110} pole figures of these 200 orientats. Given the low number of orientations, this
crystallographic aggregate can be considered andnae preferential orientations.

(a) Morphology (b) Mesh (¢) Crystallographic texture
x2

B
et

Pole figure {100}
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Pole ﬁgilre {110}
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Figure 1. (a) Grain morphology, (b) Mesh and (d)@Land {110} pole figures showing the selected
crystallographic orientations

2.3. Fatigue loading conditions
Different loading conditions are investigated imstiection: uniaxial loading, and tension /torsion

loadings with different biaxiality ratiok = o, /7, and different phase shifts. The selected loading

ratio is Ry= 0,

a,min

/0. max = —1. The combined loading levels equivalent to the iaredatigue limit

at 10 cycles are determined using the Crossland critgfp These load levels are given in Tablel.
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Table 1. Tensiond, ) and torsion () stress amplitude used for different load condgio

. , , Combined loading
loading Tension | Torsion o.[MPa)/7, [MPa]
« | biaxiality k=0 k= | k=05 | k=1 | k=2
5| 9=0° £6/0 43.5/22 | 30/30| 17/34
% ¢ =45 0/36 47123 31/31| 17/34.5
e
o | ¢=90 56/28 34/34 | 17.5/35

3. Mesoscopic fatigue indicator parameters

The studied fatigue indicator parameters (FIPskevsetected from stress criteria widely used in the
literature. The multiaxial HCF criteria considerdre are Crossland [9], Matake [10] and Dang
Van [11]. These fatigue criteria are generally dedi in the context of continuum mechanics. In
order to evaluate the fatigue criterion on eachmated microstructures, the usual HCF criteria are
projected on the slip systems of the crystals. phigedure is repeated for each crystal considering

its local orientation ¢,,¢,¢,) and local stress state computed by FE for eaaling case. For
instance, the shear stress vector in a given piatransformed into a resolved shear stress vector
over a slip system. The rotation of the crystaspace (defined by the Euler angles,, ¢,))

covers all the planes and directions of space, lwbkitables to find the same critical planes and
directions (planes and directions maximizing thiedon) than those obtained by the original
criterion (with continuous formulation). Table 4/gs FIP expressions adapted to the crystal scale.

Table 2. Expression of Fatigue Indicator Parametdis) of the studied criteria

Criterion I a

s t.,—\s_ 3
CrOSS'ﬁnd Ic = Z-oc'(,a + acahyd max s :Bc O'C = M

(s./3)

Matake Im = mﬁ?(T:) + amas,max < IBm a. = Zt;l -1

s= s,

= 7S _L- (S—l/ 2)

DangVan |y, =Maxmax|f*(s.t)] + @y 0 (D) < By d, ey

Finally, the parametersr, and £ describing the median macroscopic threshold ottrsidered

criteria are identified from two median fatigue tisafor 10 cycles of the considered material on

smooth specimens under fully reversed loadingsitan(s_, =56 MPa) and torsion (, =36 MPa)
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from the work of Lukas and Kunz [12]. The parametg are identical for the three criteria

(B.=B,=pB, =t_,). The expression ofr, are given in Table 2.

A comparison between the mesoscopic FIPs predgtm the macroscopic (original) criteria is
shown in Figure 2. This comparison shows the extsef grains at the surfadeghlighted in light
blue)or in the bulk of the volume element from which #i@ exceeded the macroscopic threshold.
The macroscopic threshold is not applicable at ghan scale. This is especially true for the
Crossland criterion where most of the grains amvealthe threshold. For other criteria, only a small
number of grains exceeded the macroscopic threshdld statistical analysis of the
microstructure-sensitivity of the different FIPslivde presented in the next section. This statibtic
analysis will determine a new mesoscopic thresholdiake into account the microstructure
heterogeneities.

(a) Crossland FIP (b) Matake FIP (c) Dang Van FIP
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Figure 2. Locus of the 200 FIPs at the grain lesgtile (gray dots), and macroscopic criterion (bat) in
the case of tension loadingR( = —1). The FIPs corresponding to the surface grainsigtdighted (in light
blue) and the black straight line is the experirabmtacroscopic threshold

4. Microstructure sensitivity

The HCF strength is related to the critical graimoge response leads to the maximum value of the
FIP. These extreme values are located at theafilse probability density functions of mesoscopic
responses (see Figure 3) and are highly sensiivtbe microstructure attributes. To study these
critical grains, several statistical approachespassible. The method selected for this work was
based on the extreme value probability. This metilves the statistical analyze of the
maximum values of the mesoscopic FIP, corresponttirtge various studied volume element, by
considering a single value for each aggregate.
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Figure 3. Localization of the extreme values inttiks of the Dang Van FIP distribution
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The extreme value database was constructed byifidegtthe maximum value of FIP for each
statistical volume element (SVE). The number of S\ME&as between 25 and 35: they were obtained
by the combination of 7 random morphologies (Figtu@)) and 5 isotropic textures (Figure 4-(b)).
This sample size is sufficient to determine theexe values distribution function. Indeed Przybyla
showed that from a number of SVEs greater than tR6, difference between the empirical
distribution and the experimental sample becomegigiele [3, 4]. The maximum value of FIP has
been determined on the one hand from the FIP coimgeall the grains of the SVE and on the other
hand by separating only the surface grains of tjyeegate.

(a) grain morphologies

MICRO 1 MICRO 2 MICRO 3 MICRO 4
MICRO 5 MICRO 6 MICRO 7

(b) grain orientations

Pole figure {100} Pole figure {110} Pole figure {1}
x2

ORIEN 1
ORIEN 2
ORIEN 3
ORIEN 4
ORIEN 5

Figure 4. (a) random morphologies and (b) isotrogxtures used to create the extreme values da&tabas
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5. Generalized extreme values probability

Let us consider a random variable with the distribution functiofr, (x). The n extreme

realizations inn samples of the random variable can be defined as:

Y, =max{(X,, X,,....X,) (1)
The distribution function ofY, is defined as:
F, (y)=P(Y,<y)=P(X,<y.X,<y,...X, <) )
According to theFisher-Tippet theorem, if there exist two real normalizing sequenc(eﬁ)nzl,

(b,),.,and a non-degenerated distribution (not reducedpoint) G so that:

P(Y"e;b" SX}F"(anxmn) , o) @

G is necessarily one of the three types of distidmst Fréchet, Weibull or Gumbel.
Jenkinson [13] combined the three limit distribngdn a single parametric form called Generalized
Extreme Value (GEV) distribution depending on ayrparameteré:

G.(x)= eXF{— (1+&)¢| sié#0,0x/1+&>0 @
exp-exp-x)) s =0

The & parameter is called extreme index. Its sign indgdhe type of asymptotic distribution:

Weibull (£<0), Gumbel (= 0) or Fréchet €> Q. The variable (Y,-h )/a, is called

normalized maximum of the random variabkeThe parametersa, and b, are also called shape

factors of the distribution.
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Figure 5. Probability density and cumulative pradligldetermined using the maximum likelihood medho

from the extreme values of Crossland FIP for terisiading Ry=—1)
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We are interested in the maximum values of diffefdRs listed in Table 2. Scale factows, (and

b,) and extreme indeXt are determined using the maximum likelihood metiviiti a confidence

interval of 99%. Figure 5 shows a comparison betwibe determined distributions and the samples
for the Crossland FIP. The identified GEV densitgdtion and distribution function showed a good
correlation with the probability density and theradative probability determined from the extreme
values of FIPs database.

6. Results and discussions

Figure 6 represents the mesoscopic thresholds émedind also the values of 0.1 and 0.9 quantiles)
for each loading condition. The mesoscopic thregdhale statistically determined from the FIPs at
the grain scale considering the local stress sftes local stress state is computed by a finite
element (FE) simulation. A comparison between tlesascopic thresholds obtained by considering
a 3D FE model (described above) and a 2D FE mddgli$ presented in this figure.

The mesoscopic thresholds are normalized by theaseapic threshold to analyze the effect of
microstructure variability. Referring to figure ®r all studied loading conditions and studied FIPs
the normalized mesoscopic thresholds were alwagerdhan 1 in the case of the local stress state
computed by 2D FE model [14]. When the local stretsde is determined by a 3D model, the
mesoscopic threshold determined from all grainsedses for Matake and Dang Van criteria, and
increases slightly in the case of Crossland cateriwhen considering all the grains (bulk +
surface), this threshold is higher for Crosslantegon and is close to 1 for Matake criterion and
especially for Dang Van criterion. The mesoscopieshold determined by considering only the
surface grains becomes lower than the macroscbpstiold for Dang Van criterion. This is not
verified for the other two criteria. This comparnsbighlights the ability of the Dang Van criterion
to reflect the microstructural heterogeneities cared to the two other criteria.

On the other hand, the mesoscopic thresholds, etefas the medians of the extreme value
distribution of the studied FIPs depend on the iligidase. This gap depends on the studied FIP: it
is low in the case of the Crossland and Dang Vé&s KFigure 6-(a) and (c)) and significant in the
case of the Matake FIP (Figure 6-(b)). For thig¢ &, the change in mesoscopic thresholds was
observed especially for the biaxial loading withhease shift of 90°.

(a) Crossland FIP (b) Matake FIP (c) Dang Van FIP
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Figure 6. Evolution of the median (a probabilitydob0) of the extreme value distributions of (apg$3tand,
(b) Matake and (c) Dang Van FIPs, as a functioloadling conditions determined by 2D (in black), &l
(in blue and red) FE model. The two limits of theerval correspond to a probability of 0.10 and0.9
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Finally, the mesoscopic threshold, common to alltteading cases was determined as the average
of the thresholds associated to each loading dondit This mesoscopic average threshold is shown
in Figure 6 by the dashed horizontal lines pas#ingugh all intervals bounded by the values of 0.1
and 0.9 quantiles in the case of Crossland andDérg FIPs. For Matake FIP, this was also true
except for the case of biaxial loadings with a ghstsft of 90° due to the reasons mentioned above.

(a) Crossland (b) Matake (c) Dang Van
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Figure 7. Predictions from (a) Crossland, (b) Matakd (c) Dang Van at the macroscopic length scale
(black line) and the mesoscopic length scale cenisig all grains (gray dots) and surface grainaygiots).

The mesoscopic threshold of different FIPs is therage (over the different loading conditions) of

the medians of the extreme value distributions.piege the same value for the, parameter, the

new criterion containing microstructural heterogeeg contribution at the mesoscopic length scale
is plotted in Figure 7. This Figure illustrates &ach criterion two mesoscopic thresholds : trss fir
was determined from all the grains of the aggregedd line) and the second was computed by
considering only the surface grains. When the noegns threshold is close to the macroscopic one
(black line), the microstructure heterogeneitiestaken into account by the original criterion. sThi
is especially the case of Dang Van criterion, whrenmesoscopic threshold determined for all the
aggregate grains is equal to the macroscopic tblgshand to a lesser extent the case of Matake
criterion (Table 3). For the Crossland criteriohe tdistance between the two straight lines is
important in the case of thresholds determined fatirthe grains and from the surface grains (table
3). This comparison shows that critical plane tymproaches can capture the microstructure
heterogeneity despite simplifying assumptions [11].

Table 3. Values of macroscopic thresholds and ncepisthresholds obtained by 2D and 3D FE modeling

M acr oscopic M esoscopic Thresholds
Criterion P 2D model 3D model 3D model
Thresholds . . .
(all grains) (all grains) (surface grains)
Crossland 36.15 54.78 55.68 51.48
Matake 36.15 41.97 39.21 36.82
Dang Van 36.15 39.81 36.36 33.59
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7. Conclusion

From polycrystalline modeling of pure copper codplgth a statistical study of the critical grains,
we analyzed the mesoscopic responses of the maltikatigue criteria, widely studied in the
literature (Crossland, Matake and Dang Van). Thetigtical study allows us to introduce
microstructural heterogeneities effect in the Maifity of the fatigue strength.

The comparison between the mesoscopic predictibtiese criteria and the macroscopic (original)
ones shows that they are not conservative at tlan gscale. Indeed the identification of
macroscopic parameters of these criteria doesaketinto account variations of the strain field at
the microstructure scale. The proposed method,dbase extreme value statistics, consists in
readjusting these parameters on the most criticaihgcomputed from FE calculations. These
critical grains are located in the tails of the r@ggte response distributions. The determination of
the different distributions allowed us to defineeaw mesoscopic threshold for the studied criteria.
These thresholds are the average of the mediatieeadxtreme value distributions related to the
different loading conditions. These thresholdsdifferent or similar to the macroscopic thresholds
depending on the considered criterion. For Dang, Yhe mesoscopic threshold is equal to the
macroscopic value of the fatigue indicator parameM the opposite, for Crossland, the ratio
between meso and macro thresholds is greater thaMatake criterion has a ratio of around 1.1.
Finally, except for the biaxial loading with a pkashift of 90° where FIP median values are very
different from one criterion to another, the mesgsc thresholds is almost the same for all the
loading conditions. Thus, these new mesoscopisihioids can therefore be determined by applying
a single loading case.
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