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Abstract

This paper is concerned with the extension of antbg developed probabilistic framework based onbiés
weakest link and extreme-value statistics to aegiree materials like titanium alloy and nickel-basger
alloys usingsimulation strategies that capture both the esseficeotch root stress gradient and the
complexity of realistic microstructuretn this papernotch size effects and notch root inelastic bemasie
combined with probability distributions of microseastress-strain gradient and small crack initiatto
inform minimum life design method#& new approach which can be applied using crystadtigity finite
element or closed-form solution is also proposed a®re robust approach for determining fatigueméactor
than the existing classical methods. The fatigugmdéactors predicted using the new framework argaod
agreements with experimental results obtained fitarature for notched titanium alloy specimensjsated to
uniaxial cyclic loads with various stress ratio

Keywords: probabilistic mesomechanics, weakest link, mitta$ure-sensitive, fatigue notch factor, fatigue
indicator parameters

1. Introduction

Titanium alloy is widely used in aero engine components. Thgufatresistance of aero-engine
components made from this material can be drastically rddogehe presence of small notches on
the components formed from the ingestion of foreign objectsragésieign object damage (FOD) [1

- 2]. To account for the effects of FOD on the fatiguengfiie of these materials, the damage are
usually modeled as notches with a certain depth and notch dios fd- 2]. The severity of these
notches in materials is characterized by the elastissstrencentration factor; which is the ratio of
peak (maximum) local stress at the notch root to the remqiplied stressSas shown irFigure 1.

g =

S (1)
k; is dimensionless and a compilation of its values for diffen@tth geometries and loading modes
can be found in Peterson’s book [3]. Howeverutder-estimate fatigue life and several arguments
have been attributed to this observation. The fatigueofifeotched component is not only dependent
on the peak stress as predicted hybkit also on the average stress that acts over a @iaiteage
process zone. Consequently, fatigue life prediction methods baskdtypically do not consider
stress gradients which have been shown to influence theddtfg of complex notched components
[4 - 5]. Thus, the actual reduction factor on long fatiguedliis typically represented by the concept of
fatigue notch factor, otherwise known as the fatigue stheregtuction factor, k
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Figure 1. Stress distributions in a notched spetime

The fatigue notch factor;,kis determined at a given number of completely reversedscyiyigically
10° or 10) to crack initiation and is given as:

unnotched

k=21

f W
)
Whereo""""*’s the fatigue strength of the unnotched specimersAfit'*is the fatigue strength of
the notched specimen. The difference betwegelnkl k for a given microstructure is typically
represented by the notch sensitivity factor, q given as:
k. -1
k, -1

’ 3)
At g = 0, there is no notch sensitivity and g1 we have full notch sensitivity. i.e. full theoretical
elastic concentration effect. Several empirical relatioerge been developed to estimate the fatigue
notch factor of a material and its associated notch sétsitndex. These techniques include: the
classical methods (Neubers [6 - 7], Peterson [3, 8] and bl@y\Q]), stress field intensity method
[10], and probabilistic method based on linear elastic frach@ehanics [11]. Detail review of these
methods can be found in [12], each attempt to simplify the confi@bavior of fatigue in notched
components to a few geometric and characteristic matesiatants. However, these approaches
suffer from some fundamental drawbacks. Among these drawbatla the fatigue notch factors are
obtained through time consuming and costly experiments. Mordbeerelationship of microstructure
to K;, using these constants has proven difficult tabfish. Recently, Owolabi et al. [14] have
established a probabilistic framework based on weakest lgdattand extreme-value statistics which
incorporates information regarding the peak steess$ stress gradient relative to microstructure
length scalesvithin a well defined fatigue damage process zone arounddtud root. This paper
combines the developed probabilistic framework with othertiagigprobabilistic formulations that
consider the size distribution and different competing damagdamisms foaero-engine materials.

q_

2. Material Systems

The alloy used for this study is a dual-phase titanium alleAF4V. Ti-Al alloys offer a range of
properties such as high strength and fracture toughness amnhpereures to high strength and creep
resistance at elevated temperatures. These wide rahgesperties have led to extensive use of Ti-Al
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alloys in engineering applications from airframe componentohopressor blades applications. The
experimental data used in this work were obtained from Haritak[#}, Lanning et al [13] and Naik
et al. [15] on Ti-6Al-4V for various notch root geometries aindss ratios. The Ti-6Al-4V specimens
used in these papers were obtained from forged bar, whichinitéally heat treated to 768 for 2 h,
and then followed by static argon cooling to below’49rhe material was subsequently annealed in
vacuum at 54% for 2 h. This is then followed by static argon coolingblow 148C. The
microstructure of the resulting bar is as shown Figure 2.

Figure 2.Ti-6Al-4V forged plate microstructure [1]

3.0. Crystal Plasticity model of Ti-6Al-4V

Crystal plasticity models are more suited for studyingrbgeneity and interaction across grains in
the notch root field as they relate grain scale stresgystallographic slip response [16 - 18]. The use
of crystal plasticity is thus relevant for the accugadiction of the stress-strain field response at the
notch root. The crystal plasticity model used in this workaseld on 3D crystal plasticity models
developed by Mayeur and McDowell (2007)[19]. Thus, only the summatheotrystal plasticity
constitutive models is presented in this section.
The deformation in the material is based on a standardetso multiplicative decomposition of the
deformation gradient into elastic and plastic parts, i.e.,

F=FF° (4)
Here, Fis the total deformation gradient] Eaptures the dislocation glide through the lattice wHile F
captures the rigid body rotation and elastic stretching ofattied. The plastic velocity gradient”L
defined as the sum of the crystalline shear displacerateg over all slip systems k is given in the
isoclinic, lattice invariant intermediate configuration 28][

Nsys
P =gP [ﬂFp)_lz Z yk(sgmné) (5)
k=1

Here,y* is the slip system shearing rate, agtié®d r* are fixed unit vectors in the slip direction and
slip plane normal direction, respectively. The slip vect®fsand @ remain unchanged through
deformation F from the reference to the intermediate configuration anéhtena orthogonality
through E. The relationship between the slip system shearing nat¢he resolved shear stress of the
ki Slip system is described by the power law flow rule milbg McGinty [21] as:

M

k k k
el
vk =1 sgn(rk - x¥) (6)

pk
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Here,y, is the reference shearing rate, M is the inversénstaée sensitivity exponent which controls
the rate sensitivity of flowz® is the resolved shear stregs,is the back stresx® is the length
scale-dependent threshold stress ahisBhe drag stress. As developed by Zhang et al. {8€]drag
stress is taken as a non-evolving constant, while the baelsssivolves according to an
Armstrong-Frederick direct hardening/dynamic recovery typejoégon, i.e.,

i =K = xk | ()
With %¥(0)=0. The threshold stress is expressed as

=
x

<

=

- ik ®

3.1 Simulation of Notched Components

The crystal plasticity constitutive model was coded int)AGBIS 2006 UMAT, based on previous
work by Zhang et al [22]; Mayeur and McDowell, 2007[19]. For texture6Al-4V alloy, some of
the material parameters in the crystal plasticity araiobtl from Bridier et al [23]. Finite element
simulation was performed on three different geometries, @desising 3D stress four-node linear
tetrahedron element type (C3D4) and consisting of approximately 21884@rek to estimate the
stress distribution and possible plastic straining thatiroiccthe notched specimens. The dimensions
of the specimens used and the different test cases areemsigiTable 1. A diagram of the gage
section of the specimen is provided in Figure 3.

7

o]
d jeoo
D

S il

Figure 3. Gage section of the cylindrical specimiéh a circumferential V-notch.[1]

To reduce computational time, the notched specimen geomegiege@wmposed into three different
regions: an outermost region, far from the notch root, wheteoc linear elasticity is used; an
intermediate transition region where macroscopicydlic plasticity theory is used; and finally the
notch root region where crystal plasticity theory is used. dleenent size at the crystal plasticity
region was chosen to coincide with the average grain siZe6#l-4V which is 45um. The domain
decomposition is as shown in Figure 4. Also, One quarter ofytledrical notched specimen was
modeled because of the symmetry in loading and geometrg spttimen as shown in Figure 5.

The bottom of the notched specimen is encastre while syminetindary conditions are applied to
the two planes of symmetry. The notched specimens werel w@steur different load ratios; R=0.1,
R=0.5 and R=-1. Average alternating HCF strength atgéles, as determined by Naik et al [15] and
as contained in Table 1 for different load ratios, areieghpb the top of the specimen.
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Table 1. The 7 different test cases
Test Kt Notch radius, Notch depth, R-ratio Average alternating HCF

Case p (mm) h (mm) strength at 10cycles (MPa)
1 2.78 0.330 0.729 -1 173.6
2 2.78 0.330 0.729 0.1 158.9
3 2.78 0.330 0.729 0.5 104.6
4 2.78 0.203 0.254 0.10 167.2
5 2.78 0.203 0.254 0.50 105.2
6 2.78 0.127 0.127 0.10 144.7
7 2.78 0.127 0.127 0.50 111.0

Linear Elastic

12 Plasticity

Crystal Plasticity 7.63mm

6.1m

12 Plasticity
4.58m

3.05 m

Linear Elastic 153 hm

5.72 mm

Figure 4. Domain decomposition of the cylindrical Figure 5 Finite element mesh for 0.33 mm notch root
notched specimen geometry. radius and K= 2.78 consisting of four-node linear
tetrahedron element type (C3D4)

For a smooth specimen with defects having a fatigue dampegcess zone of volume V, the whole
volume is divided into small volume elements, dV with probabditfailure of a sufficiently small
volume element given as:

dP = Adv 9
Where here, A is the critical defect density defined as the expected numibeefects per unit
volume of the smooth specimen. Using weakest link theorypitbleability of survival of the entire
volume is obtained from the probability of survival of all “mimber of sub-volumes i.e.

m m

Ps=u(1—dPi)=r_l(l—/ldV) (10)

This equations assumes that the defects are randomly distrituithin the volume and thus do not
interact, which is only reasonable when considering the formafianfatigue crack(s) in high cycle
(HCF) and very high cycle fatigue (VHCF) regimes.l&wing the framework presented in [14],
as the volume of each small element tends to zero, equalipngn be transformed into

P, = exp[—j/\dVJ (11)

Using the generalized extreme value distribution functios distribution of defects, that are above
the threshold, & is modeled by a power law of the form

)= Vi[l{(un}/ (12)

0 aO
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Where gand & are the scale and shape parameters respectivelyit@irngg{(12) into (11) yields

B
P :exp{—vij(& f[%n dv} (13)

If a, =a,¢ ,re-arranging equation (13) yields,

7
P, = exp{—%f{%j dv} (14)

Where @ is regarded here as the mean defect size. Equatidris(¥dlid only if§ 0. The critical
defect size is related to the microscopic stress (takirgdsea random variable) through a power law
relationship of the form

o= (15)

where A and z are materials constants. Similarly, thess amplitudego corresponding to the mean
defect size @can be taken as the fatigue limit of the reference veMgfor 50% failure probability.
The two parameters can also be related by a power |tve ddrm:

A
g, =2 (16)

Combining equations (15) and (16) we have
a. [&] (17)

Substituting Equation (17) into Eq. (14) yields

P, = exp{- Vif[ai]bdv } (18)

Where b=zL. For £&>0, b andop represents a 2-parameter Weibull shape and scale paraniéters
cumulative probability of HCF failure of the component, speaily defined can be obtained from Eq.
(18) as

P; :1—exp{‘vij(a£]bdv} (19)

To facilitate development of the expression for fatigue nactof from Eq. (18), the concept of stress
homogeneity factor that have been used is introduced hereegaton (18) can be re-written as,

b
P, =1~ exp{— kv (Jmaxj } (20)
Vo JO
where
1 b
k:_j[ o Jdv (21)
V amax

is regarded as the stress homogeneity factor. Conventioredlyatigue notch factor is the ratio of
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unmatched to notched fatigue strength at the same probabifdailue (usually 50%). Using equation
20, the probability of failure of unmatched specimen and a nospeaimen will be the same when

—% M b = _ﬁ 9 maxn i
exp{ V. ( o J} exp[ V. ( o J} (22)

where the subscripts and s represent the respective value of the variable for notahddsmooth
(unmatched) specimens. The ratio of the smooth to notch fatiigueg force parameters (i.e., the
stress amplitude) is used to define a new fatigue nottbrfgiven as

My Vo
kf _ O maxs :(ﬁJ (ﬁ] (23)
g, K, V,

maxn s
For smooth specimen that is loaded at a very low stresgan amplitude in the HCF regime, the
number of critically stressed grains (or elements) is sergll. Thus for the life limiting case in which
only one grain or element is critically stressed abovehteshold,Vs = Ve (i.e. volume of element or

grain) andKs= 1; thus Equation (23) becomes

-smor(e) (oo

maxn e maxn

%

[V_nJ% (24)
V

e

Q

However, if the materials contain some pores or inclusiogsat®n (23) must be used. It is
important to state that Egs. (23) and (24) can be used only ifirfates crack initiation is the failure
process, if crack originates from the surface, then theme parameter in this equation should be
replace with the surface area.

5. Closed Form Solution for Fatigue Notch Factor

To resolve inelastic deformation at the scale of micuotire to facilitate next generation
microstructure-sensitive notch root analyses inherently requiresh refinement to the scale of
microstructure, which is often several orders of magnituder fthan the scale of the component.
Moreover, the kind of constitutive equations that must be usedfan of advanced form and
requiring rather sophisticated and time-consuming computatiorsiegies to perform concurrent
analyses at the component and notch root microstructure scalemdizgly, direct application of
multiscale finite element analysis is simply too computatligntime consuming for practical
microstructure-sensitive fatigue damage assessment of dotcimeponents under multiaxial loads.
Thus, for practical engineering application, a more simpldied approximate model for fatigue notch
factor is presented here based on closed form solution éssalistribution at the notch developed by
Glinka using the Creager-Paris solutions of the stress dileéad of a crack. For a notch component
with notch root radiup and stress concentration factar,tke axial stress distribution along the notch
root centre line is given as:

% % ¥ %
kS=—; o (25)

P Y 4 e
X+% 2 X+% t X+% 5 X+% maxn

Finding the ratio of the stress amplitude to the maximum sare$substituting into equation (24) at x

1
g==
2
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= a; (i.e., the critical distance) will allow the determionat of an expression for the fatigue notch
factor of the form
%

b\
& %
IR [ ) B2 R (B B [v_] (26)
vVel2 aﬁ% 2ac+% v,

Assuming that the critical distance is constant for the ndtclenponent with a notch root radips
Eq. (26) reduces to

%
0

%
k, = l L +1

The above equation fors was derived using the fatigue damage process zone basedtica cr
distance, probabilistic framework based on the weakest linktrendlinka’s closed form solution
based on the notch root stress distribution. The expression 2%dghas been shown to give a good
prediction of the stress field for relatively blunt U-notches lamdised over a distance @ fsom the
notch root with an accuracy of approximately 7% [15].

[v j% (27)

Ve

6. Resultsand Discussion

The stress distribution obtained from the finite element aiglyas used in determining the average
k¢ for the geometry using the proposed probabilistic framework baisetfeibull’s weakest link and
extreme-value statistics. Also as a further validationhef groposed approach, the value pivas
calculated using the closed form solution for fatigue notchofaict Eq. (27) and the result is
compared to experimental results determined by R.A. Naik[#bpas shown in Table 2. Both results
are in agreement with the experimental results with nahuiifference. The k determined using the
Weibull's weakest link approach, when the loading ratio R #& more accurate than for every other
loading ratios tested.

Table 2. Comparison of measured and predictagskig FEM and closed form analysis

Test K Notch  Notch R- Experimental Kt using Kt using
Case radius,p depth, h ratio average K Weibull's closed-form
(mm) (mm) weakest link analysis
1 2.78 0.330 0.729 -1 2.79 2.73 2.66
2 2.78 0.330 0.729 0.1 1.80 1.89 1.88
3 2.78 0.330 0.729 05 1.75 1.82 1.84
4 2.78 0.203 0.254 0.1 1.71 1.86 1.80
5 2.78 0.203 0.254 05 1.74 1.83 1.83
6 2.78 0.127 0.127 0.1 1.98 2.05 2.01
7 2.78 0.127 0.127 05 1.65 1.72 1.77

Also, the radius of curvature at the notch root plays a ratalon the stress gradient at the notch. This
effect is captured by the fatigue notch sensitivity fagtgiven in Equation 3. Figure 6 gives a plot of
the notch sensitivity factor as a function of the notch rodiusafor the different load ratio. The

-8-
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straight line plot represents the notch sensitivity factarutaied using the Neuber’s formulation [7]
given in Equation 28 whergis a material constant taken to be 0.2 for Ti-6Al-4V [eTplot shows
that the new approach and the closed-form solutions give moreateaesult compared to the

existing Neuber’s formulation.
1 (28)

Ti-64A1-4W 10° cycles, k, = 2.78

Equation a0=0_2

¢

Exp. R=0.1
0.6 B Exp. R=05
Weibull's Sol. R=0.1

= Weibull’'s Sol. R=0.5

Notch sensitivity, g

Closed-form Sol. R=0.1
Closed-form Sol. R=0.5

Closed-form Sol. R=-1

Lo e ko o] 0. 200 O 400 O .00 o500 1 o000

Motch radius, [(mmm)

Figure 6. Notch sensitivity versus notch root radir three notch sizes.

6. Conclusions

A probabilistic framework based on Weibull's weakest link exgamlue statistic that accounts for
stress gradient at the notch root and the realistic miogtate of the material is presented. The
fatigue notch factors, ;kestimated by this approach are compared with experimentalhe
comparison shows that the proposed method accurately predictditfue inotch factor of Ti-6Al-4V
for the different Load ratios applied to the specimen gegnaetalyzed. Also, kdetermined from a
closed form solution of the proposed probabilistic approach valitteesffectiveness of the proposed
method. A plot of the notch sensitivity index against themeobot radius analyzed for the different
load ratios as shown in Figure 6 shows that the proposed appriveshngore accurate result
compared to the existing Neuber’s formulation.
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