
13th International Conference on Fracture 
June 16–21, 2013, Beijing, China 

-1- 
 

Formulation and Characterization of Fatigue Strength Diagrams of Notched 
Specimens Based on Equivalent Cyclic Stress Ratio, Attending Especially to 

Material Dependence and Notch Size Effects 
 

Hiroshi Matsuno1,* 

 
1 Department of MECHANICAL ENGINEERING, SOJO University, Kumamoto 860-0082, Japan 

* Corresponding author: hi-matsuno@par.odn.ne.jp 
 

Abstract  In the present paper, a fatigue strength diagram is formulated and characterized as a function of 
an equivalent cyclic stress ratio (named as REQ-ratio). The REQ-ratio is derived from a hypothesis of plastic 
adaptation that reflects micro-mechanical behavior of a fatigue slip band, and it was proposed as a 
corresponding parameter between cyclic stress-conditions of notched and un-notched specimens in the 
previous paper. The REQ-ratio is given as a function of a theoretical stress concentration factor Kt and a 
nominal cyclic stress ratio RN, and it is noteworthy that the REQ-ratio materializes a similitude relation 
between the fatigue strength diagrams of notched and un-notched specimens in the case where the notch 
depth is greater than about 1mm (where the notch size effect is negligible). Therefore, the REQ-ratio can be 
applied as a main variable to the formulation of the fatigue strength diagram. The formulation is extended to 
the case of the extremely shallow notch where the size effect is dominant, and finally the generalized 
equations expressing the fatigue strength diagrams are proposed. These equations are applied to regression 
analyses on fatigue data of practically used metallic materials. Consequently, the material- and size- 
dependence in notch effects are considered and characterized. 
 
Keywords  Fatigue strength diagram, Cyclic plastic-adaptation, Equivalent cyclic stress ratio (REQ-ratio), 
Notch behavior map, Notch size effect 
 
1. Introduction 

A fatigue strength diagram is formulated and characterized as a function of an equivalent cyclic 
stress ratio (named as REQ-ratio). The REQ-ratio is derived from a hypothesis of cyclic plastic 
adaptation that reflects micro-mechanical behavior of a fatigue slip band, and it was proposed as a 
corresponding parameter between cyclic stress condition of notched and un-notched specimens in 
the previous paper [1]. A graphic method estimating the REQ-ratio on the basis of the hypothesis is 
developed in the present paper. It is described that the REQ-ratio materializes a similitude relation 
between the fatigue strength diagrams of the notched and un-notched specimen in the case where 
the notch depth is comparatively large size of mm-order (where the notch size effect is negligible). 
It means that the REQ-ratio can be applied as a main variable to the formulation of the fatigue 
strength diagram. Next, the notch behavior is characterized and mapped by making the notch root 
radius and depth into variables. The notch size effect is discussed on the basis of the notch behavior 
map and the size effect factors are introduced. As a result, the formulation of the fatigue strength 
diagram can be extended to the case of the extremely small size notch, such as the depth of 10 and 
100 µm -order, where the size effect is dominant, and finally the generalized equations expressing 
the fatigue strength diagrams are proposed. These equations are applied to regression analyses on 
fatigue data of practically used metallic materials.  

2. Graphic method estimating an equivalent cyclic stress ratio (REQ-ratio) 

2.1. A hypothesis of cyclic plastic-adaptation 

Irreversible microscopic expansion developing in the slip direction of a crystal of a persistent slip 
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band is released on the surface and forms surface relief [2-4]. On the other hand, it is inside 
restrained and produces inherent compressive stress. A hypothesis that reflects such microscopic 
mechanical behavior in the persistent slip band is introduced from a viewpoint of macro-mechanics 
as follows. At the weakest spot of a surface layer, a notch root and a fatigue crack tip, the elastic 
expansion arising at the maximum stress is transformed into the irreversible expansion inherent in 
fatigue. As a result, the maximum stress at the weakest spot is substantially decreased and the 
elastic energy is relieved. Therefore, it is termed as the hypothesis of cyclic plastic-adaptation by 
author. Such stress relief is materialized for each maximum principal stress in a multi-axial stress 
condition, too. The expansion arising by the plastic adaptation behaves as a mechanical misfit and 
lowers the mean stress of substantial cyclic stress. Accordingly, the cyclic behavior of stress can be 
imaged as shown in Figs. 1(a)-(c). They show the cases of uni-axial stress (a), bi-axial stress where 
the change is the same (b) and opposite sign (c). At the weakest spot of the surface layer, the stress 
path moves from a site ab to a site ef, in common in each figure, though the outward path remains at 
a site ab. The cyclic plastic-adaptation is accomplished completely at the site ef. As mentioned later, 
it should be noted that the movement of the stress path caused by growth of irreversible expansion 
means not a change of itself but the movement of the potential field that it has. 

2.2. Derivation of the equivalent cyclic stress ratio (REQ-ratio) 

How to reproduce the cyclic stress potential field at a notch root as that in the surface layer of the 
un-notch condition is illustrated based on the hypothesis of cyclic plastic-adaptation. Concretely 
speaking, the cyclic stress that activates microscopic slip behavior in the un-notch condition as 
much as the cyclic stress does at the notch root is pictured on the diagram of the stress path. From 
this diagram, the equivalent cyclic stress ratio  

REQ  and the equivalent mean stress  
σmean EQ  are 

graphically estimated.  
REQ  and  

σmean EQ  behave just like a hydrostatic stress ratio and hydrostatic 
mean stress in the process of the cyclic plastic-adaptation, respectively. This is due to the following 
reasons; (1) the irreversibility of expansion caused by cyclic plastic-adaptation and (2) the addibility 
of volume expansion which is produced under each principal cyclic stress. These two matters give 
the important hint to quantitative interpretation of cyclic plastic-adaptation; it is the potential 
described by Mises' equivalent stress that generates a driving force advancing cyclic plastic 
adaptaion and it is the algebraic sum of the maxmum value of principal stresses that provides the 
capability producing the cyclic plastic-adaptation. So, in the present study, in order to estimate the 

 

 

 
 

Fig. 1 Change of the stress path under cyclic plastic-adaptation 
(a) Uni-axial stress 

(b) Bi-axial stress where the 
change is the same sign 

(c) Bi-axial stress where the 
change is the opposite sign 
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potential at the notch root, Mises' equivalent stress concentration factor  
Kt eq  is defined by Eq. (1) 

where  
σ x N ,  , 

τ zx N  are the stress components of the nominal condition and  
σ x NR ,  , 

τ zx NR  are 
those of the notch root. Moreover, Eq. (2) that has been rewritten by principal stresses is obtained 
by dividing Eq. (1) with  

Kt eq . Then, the principal stresses  
σ i NR  (i=1-3) are already not those 

arising actually at the notch root but those of which nominal values  
σ i N  (i=1-3) are expanded to 

the same potential level as the notch root has. After all, the principal stress of the un-notch 
condition where the potential is equal to that of the notch root is given by  

σ i NR  (i=1-3) in Eq. (3). 
The difference in the stress path of the nominal condition (magnified by  

Kt eq ) and the notch root 
condition is disregarded in the present method. As it is mentioned in the following section 2.3, such 
disregard does not affect the correspondence between fatigue strength of the notch and un-notch 
condition. 

  

Kt eq =
σ eq NR

σ eq N

=
1 2( ) σ x NR − σ y NR( )2

+ σ y NR − σ z NR( )2
+ σ z NR − σ x NR( )2

+ 6 τ xy NR
2 + τ yz NR

2 + τ zx NR
2( )

1 2( ) σ x N − σ y N( )2
+ σ y N − σ z N( )2

+ σ z N − σ x N( )2
+ 6 τ xy N

2 + τ yz N
2 + τ zx N

2( )

=
1 2( ) Kt xσ x N − Kt yσ y N( )2

+ Kt yσ y N − Kt zσ z N( )2
+ Kt zσ z N − Kt xσ x N( )2

+ 6 Kts xy
2 τ xy N

2 + Kts yz
2 τ yz N

2 + Kts zx
2 τ zx N

2( )
1 2( ) σ x N − σ y N( )2

+ σ y N − σ z N( )2
+ σ z N − σ x N( )2

+ 6 τ xy N
2 + τ yz N

2 + τ zx N
2( )

  (1) 

  

1=
σ eq NR

Kt eqσ eq N

=
1 2( ) σ1 NR − σ 2 NR( )2

+ σ 2 NR − σ 3 NR( )2
+ σ 3 NR − σ1 NR( )2

1 2( ) Kt eqσ1 N − Kt eqσ 2 N( )2
+ Kt eqσ 2 N − Kt eqσ 3 N( )2

+ Kt eqσ 3 N − Kt eqσ1 N( )2
       (2) 

  
∴ σ1 NR = Kt eqσ1 N , σ 2 NR = Kt eqσ 2 N , σ 3 NR = Kt eqσ 3 N                  (3) 

One example of the process of the cyclic plastic-adaptation at the notch root of material subject to 
cyclic torsion is shown in Fig.2, where plane stress is assumed. The segments ab and cd show the 
stress path of the nominal condition and the expanded one of the un-notch condition of which the 
potential is equal to the notch root, respectively. The segment ef shows the stress path where the 

 

Fig. 2 Illustration of the graphic method of 
how to estimate  

REQ  and  
σmean EQ  

(cyclic torsion) 
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cyclic plastic-adaptation is accomplished completely. On the way of the cyclic plastic-adaptation 
process, as it is shown by the segment gh, each maximum values of the principal stress become 
equal to that of the nominal stress path, respectively. This is an important matter which should be 
mentioned specially; for, it means that, if the cyclic stress shown by the segment gh is applied to the 
un-notched material, the cyclic plastic-adaptation process at the notch root can be reproduced at the 
surface layer of the un-notched material. Therefore, it can be said that the segment gh corresponds 
to the equivalent cyclic stress condition between the notched and un-notched specimens. In the 
present study, the stress ratio  RN

∗  is newly defined for multi-axial stress condition other than the 
usual nominal stress ratio  RN . The  RN

∗  is formulated as a ratio of the algebraic sum of the 
x/y-coordinate value for each of the peak point p and q of the rectangle paqb with the line segment 
ab as a diagonal line (henceforth, the basic equations are shown with the three-dimensional form); 

  
RN

∗ =
σ1max N − Δσ1 N( ) + σ 2 max N − Δσ 2 N( ) + σ 3max N − Δσ 3 N( )

σ1max N +σ 2 max N +σ 3max N

                (4) 

Next, the equivalent cyclic stress ratio  
REQ  is formulated as the ratio of the algebraic sum of the 

x/y-coordinate values for each of the peak points p and r of the rectangle pgrh with the line segment 
gh as the diagonal line, and the expression is moreover simplified by using Eq. (4); 

  

REQ =
σ1max N − Kt eqΔσ1 N( ) + σ 2 max N − Kt eqΔσ 2 N( ) + σ 3max N − Kt eqΔσ 3 N( )

σ1max N +σ 2 max N +σ 3max N

= RN
∗ − Kt eq −1( ) 1− RN

∗( )
            (5) 

Last, the equivalent mean stress  
σmean EQ  is formulated as the algebraic sum of the x/y-coordinate 

values of the middle points m of the rectangle pgrh with the line segment gh as a diagonal line; 

  

σmean EQ = σ1max N +σ 2 max N +σ 3max N( ) − Kt eq Δσ1 N + Δσ 2 N + Δσ 3 N( ) 2

= σ1max N +σ 2 max N +σ 3max N( ) − Kt eq σ1a N +σ 2 a N +σ 3a N( )
             (6) 

where,  
σ i a N  (i=1-3) are the principal stress amplitude of the nominal condition. Saying again, 

 
REQ  and  

σmean EQ  behave just like a hydrostatic stress ratio and hydrostatic mean stress in the 
process of the cyclic plastic-adaptation, regardless whether the stress components constituting them 
synchronizes or not, respectively. For the un-notch condition of   

Kt eq = 1 ,  
σmean EQ  of Eq. (6) is 

coincident with the mean hydrostatic stress that Sines introduced into his criterion [5]. 

2.3. Applicability of the REQ-ratio to fatigue strength diagramming 

In order to prove the applicability of the equivalent cyclic stress ratio  
REQ  and the equivalent mean 

stress  
σmean EQ , the fatigue strength of the specimen containing a comparatively large size notch 

(from the reason why influence of the notch size effect is little) is plotted on the diagram where the 
abscissa shows  

REQ  and  
σmean EQ  and the ordinate does the notch root stress range  Δσ NR . Fig. 3 

shows the fatigue test result concerning the notched and un-notched round-bar specimen of SM400 
(low carbon structural steel) subject to cyclic axial loading under mean stress of tension side [1] and 
suject to rotating bending. Fig. 3(a) and (b) represent the  

REQ -based and  
σmean EQ -based fatigue 

strength diagram, respectively. The depth of the circumferential notch  t  is 3 mm for axial cyclic 
loading test and 1.5 mm for rotating bending test. The notch root radius ρ  is changed in the range 
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from 0.1 to 3 mm. The  
REQ  for axial cyclic load is estimated by FEM based on Mises' equivalent 

stress and the factor  p  done as the ratio of the average equivalent stress in the notch section 
 
σ eq  

to the nominal stress  σ N  [1]. In Fig. 3, the colored plot represents the experimental result. From 
the dispersion state of a plot, it is found, the fatigue strength is systematically arranged in spite of 
differences of stress concentration factors and mean stress, and it is clearly separable into the two 
groups of   σ w1  and   σ w2 . The curved and straight lines represent the fatigue strength diagrams of 

  σ w1  and   σ w2 , respectively, and they are drawn on the basis of the regression equations derived in 
the following chapter. The horizontal axis of the graph in Fig. 3(a) can be converted from the scale 
of  

REQ  to the scale of 
  
Kt eq 1− RN

∗( )  and 
  
Kt 1− RN( )  as shown in the lower berth of the graph; 

  
1− REQ = Kt eq 1− RN

∗( ) = Kt eq Δσ eq N σ eq max N( ) = Δσ eq NR σ eq max N   (for axial load)     (7) 

  
1− REQ = Kt 1− RN( ) = Kt Δσ N σmax N( ) = Δσ NR σmax N     (for rotating bending)  (8) 

Both the axes of the graph take the scale proportional to  Kt . Therefore, it can be said that a 
similitude relation between the diagrams is materialized. This means that  

REQ  is very useful as the 
correspondence parameter between the fatigue strength of the notched and un-notched specimen. 
The coincidence of a diagram in Fig. 3(b) means that the  

σmean EQ -based fatigue strength diagram 
obtained from the fatigue data of the notched specimen turns into the  

σmean N -based fatigue strength 
diagram of the un-notched specimen as it is. 

3. Formulation of the fatigue strength diagram based on the REQ-ratio 
3.1. Characterizing and mapping of the notch behavior 

The notch is characterized by two parameters of  ρ t  and   ρ t L0  as shown in Fig. 4(a) and (b), 
where the notch depth  t  and the notch root radius ρ  are expressed as the co-ordinates after 
normalized by the size   L0 .   L0  is introduced as an index for judging large size or small size notch. 
In the present study,   L0 = 1mm  is set emprically. The parameter  ρ t  shows the sharpness of the 
notch which  Kt  depends on and the parameter  ρ t  does the scale of the notch which the size 
effect depends on. Taylor classified the character of the notch behavior into three and drew the 

 

 

 

Fig. 3 Fatigue strength diagram of SM400 steel 
round-bar specimen with the large-size notch 
(The fatigue tests were performed by cyclic 
axial load under mean stress [1] and rotating 
bending)  

(a) 
REQ vs. KtΔσ N diagram and similarity 

(b) 
σmean EQ vs. Ktσ amp N diagram and identity 

with that of the un-notch condition 
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distribution map on the key map [6]. His map seems to be rather suitable for expressing the 
characteristic of the fatigue strength   σ w2 . So, a new map is created so that it can express the 
characteristic of the fatigue strength inclusive of the fatigue strength   σ w1 . The new map is shown in 
Fig. 5, where the character of the notch behavior is classified into four domains; (I) Un-notch-like 
behavior, (II) Prototype notch behavior, (III) Long-crack-like behavior and (IV) Short-crack-like 
behavior. The four domains are partitioned with three characteristic lines AB, CD and BD and with 
the outgoing lines BE and DF drawn in the horizontal and perpendicular directions from the two 
intersections. The characteristic lines AB, CD and BD are expressed by the following simple 
formulas,   ρ t = 10 ,   ρ t = 10−1  and   ρ t L0 = 1, respectively. A straight line PR formulated as 

  ρ t = 1 expresses the size change of the circular or spherical hole that represents typical notch 
behavior. The distribution of the fatigue strength can be diagramed in a logarithmic scale by taking 
the z-axis in the direction perpendicular to space of the map. Three examples are schematically 
shown in Fig. 5. One is the diagram of the fatigue strength   σ w1  for the circular or spherical hole. 
The diagram makes   ρ t L0  a variable and it is shown as a   σ w1 − ρ t L0  diagram on the line 
where   ρ t = 1. As mentioned later, a  σ th − area  diagram that makes Murakami's parameter of 
 area  a variable is a particular case of the   σ w1 − ρ t L0  diagram where   ρ t = 1  and 

  ρ t L0 <1. Another is Kitagawa-Takahashi diagram that makes a crack length   a a2  a variable 
and the diagram is known as a   σ th − a a2  diagram [7]. The   σ th − a a2  diagram is depicted as a 

  σ w2 − t L0  diagram on the horizontal axis (x-axis) in Fig. (5) where the crack length   a a2  is 
replaced by the notch depth   t L0 . Moreover, Kitagawa and Takahashi prepared another critical 
size   a1  that represents the substantial transition from large size crack to small size one. This type 
of transition size on the fatigue strength   σ w2  is expressed by replacing   a1 L0  by   t0 L0 ; the 
transition notch size is shown as   t0 L0 = 101 2  in Fig. (5). The third is the fatigue strength of the 
un-notch condition   σ w0  that is distributed on the vertical axis (y-axis) as a uniform value. This 
value is thought to be materialized in common where both   ρ L0  and   t L0  are extremely small. 

 

 

 

 

(a) Notch sharpness:  ρ t  

(b) Notch size scale:   ρ t L0  

Fig. 4 Index parameter of notch sharpness and 
notch size scale:  ρ t  and   ρ t L0  

Fig. 5 Notch behavior map and a few typical distributions 
of fatigue strength threshold stress 
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3.2. Primary equations at the onset of formulation and their modification (Domain II) 

The fatigue strength diagram is formulated first for the prototype notch of the domain II (  ρ t ≥ L0 ), 
where the notch size effect is not taken into consideration. In the following section 3.3, the equation 
is developed into a general form including the short-crack-like notch of the domain IV (  ρ t < L0 ), 
where the notch size effect is taken into consideration. Primary equations that become a starting 
point of formulation are as follows, where Eq. (9) is quoted from Ref. [8]; 

 
  
Δσ NR( )w1

= C1 1− REQ( )γ ,      (Fatigue strength   σ w1 ) (9) 

 
  
Δσ NR( )w2

= C2 1− REQ( ) .      (Fatigue strength   σ w2 ) (10) 

Eq. (10) is rewritten by using the conversion expression of Eq. (8), as follows; 

 
  
σmax N( )

w2
= C2 .             (Fatigue strength   σ w2 ) (11) 

Eq. (12) is adopted as an asymptotic equation of Eq. (9) on   σ w1 , so that the ultimate strength of 
material  SU  may be gradually approached with an increase of the value  

REQ ; 

 
  
σmax N( )

w1
= SU  i.e. 

  
Δσ NR( )w1

= SU 1− REQ( ) . (12) 

Solving Eqs. (9) and (12) about 
  
1− REQ( )  and susequently transposing those algebraic sum to new 

  
1− REQ( ) , Eq. (13) can be expressed; 

 
  
Δσ NR( )w1

= C1 1− REQ −
Δσ NR( )w1

SU

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

γ

.      (Fatigue strength   σ w1 ) (13) 

Eq. (13) is a very important as the expression which not only improves the precision for calculating 
the fatigue strength   σ w1  but also explains how the tensile strength of material  SU  relates 
quantatively with   σ w1 . The equation expresses that the SCF-criterion ( Kt -criterion) is materialized 
for   σ w1  by using the equivalent cyclic stres ratio  

REQ . On the otherhand, for the fatigue strength 

  σ w2 , Eq. (10) and (11) is used in a form as it is. It should be noted that, at this stage, γ ,   C1  and 

  C2  are not material constants but variables. Strictly speaking,   C1  includes free boundary 
correction and   C2  includes a function of the notch depth  t . 
 
3.3. The equations generalized by incorporation of notch-size effects (Domain IV) 
 
The factor of a notch size effect is incorporated into the euations derived in the foregoing paragraph. 
The judgement whether it is necessary to take the notch size effect into consideration or not is 
performed according to the value of a notch size  ρ t . In the present study, the value of   ρ t = L0  
is selected as the critical value as shown in Fig. 5. As it is mentioned in the foregoing section 3.1, 
the fatigue strength   σ w1  depends on the notch size  ρ t  and the fatigue strength   σ w2  does on 
the notch depth  t . Therefore, the size factors   FS1  and   FS 2  are introduced in the forms of the 
functions of  ρ t  and  t , respectively; 
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FS1 = f1 ρt( ) , (14) 

   
FS 2 = f2 t( ) .   (15) 

Generally, the nominal stress of the plate and round-bar specimen containing a hole, a defect and a 
pre-crack is shown by gross-sectional stress. On the other hand, that of the plate and round-bar 
specimen containing an edge and circumferential notch is shown by net-sectional stress. These 
specimens are often furnished with the net-sectional area unified for different  Kt  and accordingly 
their gross-sectional area is different every specimen. Such difference has serious influence for the 
asymptotic process ofthe fatigue strength   σ w1  to the ultimate strength of material  SU . So, a factor 
of  FG  is introduced for the fatigue strength   σ w1  expressed by the net-sectional stress, as follows; 

   FG = AG0 AG , (16) 

where,   AG0  and  AG  are the gross-sectional area for   ρ t = L0  and   ρ t < L0 , respectively. Also, 
it should be noted that the fatigue strength   σ w2  in torsion is not subjected to the influence of the 
notch depth  t . A concrete form of the function of   FS1 ,   FS 2  and  FG  is summarized in Table 1. 
By using these factors, Eq. (9) and (12) are rewritten for the   σ w1  as Eq. (17) and (18), respectively; 

 
  
FS1 Δσ NR( )w1

= C1 1− REQ( )γ , (17) 

 
  
FG σmax N( )

w1
= SU  i.e. 

  
FG Δσ NR( )w1

= SU 1− REQ( ) . (18) 

Eq. (18) is adopted as an asymptotic equation of Eq. (17) so that the ultimate strength of material 

 SU  may be gradually approached with an increase of the value  
REQ . The final equation on the 

fatigue strength   σ w1  is obtained as follows; 

 
  
FS1 Δσ NR( )w1

= C1 1− REQ −
FG Δσ NR( )w1

SU

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

γ

. (19) 

Eq. (19) is obtained by solving Eqs. (17) and (18) about 
  
1− REQ( )  and subsequently transposing 

those sum to new 
  
1− REQ( ) . The final equation for the fatigue strength   σ w2  is shown as follows; 

 
  
FS 2 Δσ NR( )w2

= C2 1− REQ( )  i.e. 
  
FS 2 σmax N( )

w2
= C2 , (20) 

 

 

Table 1 Summary of the notch size correction factors 
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where, γ ,   C1 ,   C2 : Material constants. 

4. Regression analysis on the fatigue data currently introduced in literature 
 
Eq. (19) and (20) are applied to the regression analyses of fatigue data picked up from literatures. It 
is confirmed whether the function form of the equation derived in the preceding chapter 3 is 
appropriate as a regression equation. A part of the result is described below. Fig. 6 shows the result 
of a rotating bending test of S45C annealed steel with a round-bar specimen containing a small 
drill-hole. In the experiment [9], the diameter of a hole  d  was changed in the range from 0.04 to 
0.5 mm and the depth  t  changed from 0.04 to 1 mm. The fatigue strength   σ w1  is shown as a 
function of  area -parameter in Fig. 6. The plot represents the experimental result and the curve 
shows the calculated result from the regression equation. The horizontal line represents the strength 
level of an un-notched specimen   σ w0  is calculated backward from the regression equation. It turns 
out that the regression equation fits the experimental result very well. Fig. 7 shows the result of a 
rotating bending test of S45C annealed steel with a round-bar specimen containing an extremely 
shallow circumferential-notch. In the experiment [10], the notch root radius ρ  was changed in the 
range from 0.01 to 0.6 mm and the depth  t  changed from 0.005 to 1.5 mm. The fatigue strength 

  σ w1  and   σ w2  were measured and they were shown as a function of a stress concentration factor 

 Kt  in Fig. 7(a) and (b), respectively. The colored plot represents the experimental result and the 
colored thin curve/line shows the calculated result. The horizontal thick gray line represents the 
strength level of an un-notched specimen   σ w0  calculated backward from the regression equation. 
The thick gray curve obtained by dividing   σ w0  by  Kt  is drawn for reference. In both Fig. 7(a) 
and (b), it turns out that the regression equation fits the experimental result very well. The 
regression analysis using the proposed equation has applied to the fatigue testing result of the total 

 

 

  

Fig. 6 Result of a regression analysis on rotating 
bending fatigue strength of S45C round-bar 
specimens containing small drill-holes (data 
from Ref. [9]) 

(a) Fatigue strength   σ w1  (b) Fatigue strength   σ w2  

Fig. 7 Result of a regression analysis on rotating bending fatigue strength of S45C round-bar 
specimens containing small size circumferential notches (data from Ref. [10]) 
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number of about 25 sorts of ferrous materials and their heat-treatment conditions in the present 
stage. As a result, it is found that the equation is materialized with less than 10% of error. 

5. Conclusions 

(1) A fatigue strength diagram is formulated and characterized as a function of the equivalent cyclic 
stress ratio (REQ-ratio). The REQ-ratio is derived from a hypothesis of cyclic plastic adaptation 
that reflects micro-mechanical behavior of a fatigue slip band. 

(2) The graphic method estimating REQ-ratio based on the hypothesis of the plastic adaptation is 
developed in the present paper. REQ-ratio materializes a similitude relation between the fatigue 
strength diagrams of the notched and un-notched specimen in the case where the notch depth is 
comparatively large size of mm-order (where the notch size effect is negligible). It means that 
REQ-ratio can be applied as a main variable to the formulation of the fatigue strength diagram.  

(3) The notch behavior is characterized and mapped by making the notch root radius and depth into 
variables. The notch size effect is systematically considered on the basis of the notch behavior 
map and the size effect factor is proposed for each of the fatigue strength   σ w1  and   σ w2 . 

(4) The formulation of the fatigue strength diagram can be extended to the case of the extremely 
small size notch, such as the depth of 10 and 100 µm -order, where the size effect is dominant, 
and finally the generalized equations expressing the fatigue strength diagrams are proposed. 
These equations are applied to regression analyses on fatigue data of practically used metallic 
materials. As a result, it is found that the equations are materialized with less than 10% of error. 
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