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Abstract Globally, steel pipelines are widely used to transport energy in the form of liquid petroleum and 
natural gas. The steel used in the manufacture of these pipelines must have high strength and toughness, and 
high resistance to fracture. The Drop Weight Tear Test (DWTT) is the most widely used test to assess brittle 
fracture characteristics in steel. The zones of ductile and brittle fracture during DWTT characterize the 
quality of pipeline steels. In this paper, the Gurson-Tvergaard-Needleman (GTN) fracture models are 
coupled in a Finite Element model. The ductile and brittle fracture zones in the samples are analyzed under 
different conditions. The results show that the change in fracture mode during the DWTT is from the brittle 
to the ductile, then again to the brittle. The calculated absorbed energies during DWTT compare well with 
experimental findings. Finally, we present an analysis of the transition from ductile to brittle fracture under 
different conditions.  
 
Keywords Energy pipeline; ductile fracture; brittle fracture; DWTT 
 
1. Introduction 
 
Oil and gas provide 60% of the world’s primary fuel and a large proportion is transported in 
pipelines. There is more than 33,000 km of high-pressure steel pipelines in Australia. The pipelines 
are designed, built and operated to well-established standards and rules, because the products they 
carry can pose a significant hazard to the surrounding population and environment. A combination 
of good design, adequate material properties and sound operating practices are therefore necessary, 
to ensure that transmission pipelines operate safely and efficiently.  

Line pipe specifications specify minimum requirements for the shear area in a Drop Weight Tear 
Test (DWTT) to ensure the arrest of a long running brittle fracture. The DWTT, as specified in API 
RP 5L3 [1] or ASTM E436 [2], was developed by Battelle Memorial Institute in 1962 during the 
course of the American Gas Association NG-18 Research Program [3] to overcome some 
limitations of the Pellini drop-weight test which was developed by the US Naval Research 
Laboratory. In a DWTT, the test specimen is a rectangular bar with a length of 305 mm, a width of 
76 mm and of the full material thickness (up to at least19mm). The specimen has a shallow pressed 
notch and is subjected to three-point bending, as shown in Fig. 1. The standards specify a 5 mm 
deep notch made by a sharp indenter with a 45° included angle resulting in a tip radius that is 
normally between 0.0127 to 0.0254 mm [1]. A series of specimens are broken under impact loading 
at various temperatures and the proportions of ductile fracture (shear) and brittle fracture (cleavage) 
on the fracture surfaces are measured. From correlations with full-scale pipe burst tests, a transition 
temperature corresponding to about 85 percent shear is normally defined in application standards as 
the fracture propagation transition temperature (FPTT) [4-5]. 

In this paper, a numerical method has been used to simulate the fracture behavior of pipelines. 
The most commonly used fracture model in computational fracture mechanics to characterize the 
toughness of line pipe steels is the modified Gurson model [6]. The Gurson model includes the 
influence of micro-voids on the plastic flow in a constitutive framework. The Gurson model was 
later modified extended by Tvergaard [7] and Needleman [8]. The modified Gurson- Tvergaard- 
Needleman(GTN) model is used to describe the acceleration of void growth. In this model, the 
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material is regarded as a continuum, composed of a ductile matrix with microvoids. There have 
been a limited number of studies applying this model to ductile materials [9-11]. 

 

 
Fig. 1 Drop weight tear test (DWTT) specimen [2] 

 
 As opposed to simulations of the DWTT, simulations of Charpy tests are widely carried out to 

characterize the toughness of line pipe steels. Koppenhoefer and Dodds [12] investigated specimen 
size and loading rate effects on cleavage fracture of ferritic steels tested in the ductile-to-brittle 
transition region in pre-cracked Charpy specimens. The probability distribution for fracture of a 
cracked solid is defined by a two-parameter Weibull distribution [12]. Eberle et al. [13] developed 
2D as well as 3D explicit dynamic finite element analyses, in combination with the rate-dependent 
Gurson model, to simulate Charpy tests. The simulated load-displacement curve and crack front are 
in close agreement with experimental observations. Tanguy et al. [14] conducted a numerical 
simulation of the Charpy V-notch test in the ductile-brittle transition regime using a modified 
Gurson-type model for ductile damage and Beremin model for cleavage fracture. Folch et al [15] 
also developed a local coupled brittle/ductile fracture approach model to predict either Charpy 
energy or fracture toughness and to investigate conditions for correlations between them using the 
Beremin and Gurson models. The modified Beremin model is based on the principles of Weibull 
statistics for the distribution of the defects and their size as is the standard Beremin model. The 
modified Gurson model, which incorporates a yield function for porous metal plasticity, was 
utilized in this work in conjunction with the Lemaitre and Beremin models. Thibaux and van den 
Abeele [16] reported on the fracture mechanics of instrumented Charpy tests performed on an X70 
material. The tests were then simulated using a finite element method and the GTN constitutive 
model. Damage is represented by an internal variable, f, representing the void volume fraction 
which is assumed to be isotropic.  

There have been very few reports on studies of the ductile-to-brittle transition region during a 
DWTT. Nonn et al [17] performed numerical simulations of a DWTT by applying the GTN model 
and compared the simulation results with experimental results from an instrumented DWTT. The 
results show that GTN model gives a reliable prediction of the load level variation with time when 
considering strain rate dependence. By applying GTN parameters validated on quasi-static fracture 
mechanics tests, the maximum load level including the beginning of the load drop for a DWTT can 
be well described quantitatively. The model equations were not provided in the publication.  

In this paper, we used the GTN model to simulate the fracture behavior during DWTT. The stress 
at the notch was included as an initial condition in this model for the first time. The equivalent 
stress, nucleation of voids, void size distribution, etc, were analyzed. We found that the fracture 
propagates in a triangular shape at the crack tip, and the inverse fracture occurs when the fracture 
propagated about 3/4 of sample width in current study case. Some of the cases show that the 
transition during DWTT test is from the brittle to the ductile and then again to the brittle zone.  

 
2. Models and simulation  
 



13th International Conference on Fracture 
June 16–21, 2013, Beijing, China 

-3- 
 

The GTN damage model could be used to analyze the ductile fracture behavior under tension 
loads. In this paper, we also used the model to predict the damage behavior, as shown in Eq. (1), 

 (1) 

where p the hydrostatic pressure, σeq the effective Von Mises stress, σ0 the yield stress of the matrix 
(function of the plastic deformation), q1, q2 are material parameters and f* is the effective porosity. 
Material grade API 5L X80 was adopted in the models and the parameters are listed in Table 1. 
 

Table 1 Main material parameters 
Parameters Value 
Density, kg/m3 7850 
Young’s Modulus, GPa 206 
Yield stress, MPa 610 
f* 0.06 
q1,q2 1.5,1.0 

 
 
As specified in the ASTM E436 [2], the DWTT specimen is loaded in three-point bending by a 

drop hammer with 400kg weight and loading span of 254 mm. The simulated fracture test 
comprises two steps employed, as shown in Fig. 2: (1) pressing the notch and, (2) fracturing the 
sample under the action of the hammer. A three-dimensional geometrical model of the DWTT 
process was created with a pressed crack was set up with the above parameters and computational 
meshes with 8-node elements. The elements around the expected fracture zone are much finer than 
elsewhere in order to accommodate steeper gradients in parameters. In the models, there are 124864 
elements and 127002 nodes. In the DWTT process, the hammer descends with an initial impact 
speed of 7 m/s. 

 

 
Fig. 2 Geometry of the full simulation process 

 
3. Results and discussion 

Fig.3 shows the equivalent stress distribution around the pressed notch position. After the pressed 
notch was introduced (step 1) at the centre of the specimen, stress concentration  in the notch tip 
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area is observed prior to commencement of fracture. In the figure, we observe the maximum initial 
stress appeared in the notch tip zone, and this will affect the fracture behavior during the DWTT 
process.  

 

 

Fig. 3 Equivalent stress distribution and detail around the notch (MPa) 
 

Fig.4 shows the equivalent stress distribution sequence during crack propagation (step 2). The 
equivalent stress is a three-dimensional stress calculated by Eq.(2).  A maximum stress of 813 
MPa is found at the notch tip and at the loading point, due to high stress concentration at these 
places. The stress value in the central area between the notch tip and the loading point is relatively 
small. A ‘butterfly-wing’ stress distribution is observed at the crack tip and at the loading point. The 
stress distribution is almost symmetrical about the loading line. As the crack propagates, the 
maximum stress distribution extends along the loading line till the specimen fractures.  

   (2) 
Where Sij are the components of the stress deviator tensor.  

 
Fig.4 Equivalent stress distribution in DWTT sample (MPa) 
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Figure 5 shows the development of void nucleation during crack propagation from the notch tip 
to the impact side. The maximum void density always occurs at the two sides of the fracture surface 
where fully ductile fracture is seen. The voids appear to peak faster near the plane of symmetry. 
Which implies that the plasticity at the two sides of the sample is larger than that near the plane of 
symmetry. 

 
Fig.5 Nucleation of voids in DWTT samples 

 
Fig.6 shows the void volume fraction distribution in the DWTT sample at different stages. It is 

seen that the void volume fraction in the pressed notch zone is slightly larger than in the other zone, 
suggesting that the process of notch pressing affects the initiation of fracture in the test sample. 
Hong et al. [18] concluded that the stress was less concentrated at the notch tip in the pressed-notch 
specimens compared to a Chevron notch, and this makes the initiation of fracture of pressed-notch 
specimens more difficult, and accordingly the deformation preceding the fracture initiation resulted 
in strain hardening in the hammer-impacted region increased. 

 

 
Fig. 6 Void volume fraction distribution in DWTT samples 

 
As seen in Fig.7, the effective strain rate shows a peak near the plane of symmetry until the 

specimen fractures. This is consistent with the higher crack growth rate due to stress concentration 
near the surface of symmetry. As expected, the shape of effective strain rate distribution is found to 
be similar to the shape of the voids distribution. In Fig. 7 (g), it was observed that the inverse 
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fracture occurred when the fracture propagation reached 3/4 of sample width. The fracture also 
occurred at impact zones at same time.  

 

  
Fig. 7 Effective strain rate distribution in DWTT samples (s-1) 

 
The appearance of the simulated fracture surface is in close agreement with the experimental 

results [18] in terms of stress distribution and fracture morphology as shown in Fig.8. Fracture was 
initiated as cleavage fracture followed by shear fracture, and then an inverse fracture occurred at the 
impact zone of the sample. Further analyses on ductile-brittle transition will be carried out by 
developing a coupled brittle/ductile fracture model in the near future. The relationship between the 
initiation of inverse fracture and the length of mixed fracture zone need to be further investigated.  

 

 
Fig. 8 Simulated results versus the experimental results obtained in ref 18. 

 
4. Conclusions 

 
(1) A finite element model using the Gurson-Tvergaard-Needleman damage model was employed to 

simulate the fracture process of pipeline steel during DWTT, in particular, considering the state 
of initial stress around the pressed notch. 

(2) During DWTT, the fracture follows a triangular shape in the sample due to higher constraint at 
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the mid-thickness. This is compatible with the simulation results for void nucleation distribution 
and effective strain rate distribution. 

(3) The simulated results are in good agreement compared with the experimental results in terms of 
stress distribution and fracture morphology. The relationship between the initiation of inverse 
fracture and the length of mixed fracture zone need to be further investigated. 
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