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Abstract

Consider two planar circular cracks embedded in an infinite linear elastic media and submitted to mode I tensile
loading. Bueckner-Rice weight functions theory allows us to update the stress intensity factor when the crack fronts
are slightly deformed in their plane. Using an incremental numerical method based on this theory, we study the
propagation of these two cracks when they interact each other taking into account the non-linearities induced by their
deformations. The advantage of this method in comparison tomore standard finite element methods is that only the
crack fronts have to be meshed. Using a Griffith threshold law, we notice important deformations of the crack fronts
are observed and a drastically decreasing threshold loading when the fronts approach each other.
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The present study focuses on the coalescence phenomenon of two circular cracks. What is the critical loading to
reach the coalescence? Is the crack advance facilitated dueto the presence of the secondary crack? What is the shape
of the cracks during their propagation? Those questions areconsidered in the present article. To do it accurately, the
main difficulty is to calculate the three-dimensional stress intensity factors along all the fronts by taking into account
the crack shape changes induced by the interaction between the cracks.

In the literature, we can find papers treating of interactingcracks but they never take into account the cracks fronts
deformation during propagation (see [2− 5] and [8]).

Here, the effects of the crack front shape changes are analized independently of the edge effects. For this purpose,
two small cracks are considered, so we can make the assumption that the medium is infinite and subjected to remote
loading. For this reason, methods based on integral equations are adapted here: the sole cracked area is needed.
Moreover, in the present case of in-plane propagation, it isjust necessary to mesh the 1D outline of the cracks. Using
Bueckner-Rice formalism [7], the work of Bower and Ortiz [1]provides some examples of this approach in mode I.
More recently, Lazarus [6] developped a simplified variant of their method without significant loss of accuracy. All
these works only deal with a sole crack. In the present paper,we extend to two cracks in order to study their final
coalescence.
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1. Objectives
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Figure 1: Two circular cracks.

Let us consider two circular coplanar cracks embedded in an isotropic elastic body (such as depicted in figure
1). The aim of this paper is to predict the in-plane propagation of these cracks subjected to remote tensile stressσ∞
at infinity in brittle fracture. The method consists in coupling the Bueckner-Rice formalism with a propagation law
starting from a configuration for which the needed quantities, namely the stress intensity factor (SIF) along the front
and a certain kernel, are known. The procedure consists of different steps:

• Determination of the SIF for a given geometry:
Knowing the geometry and the loading, how to calculate the SIF along the fronts?

• Propagation problem with a threshold:
In brittle fracture, it is assumed that the propagation law is given by Irwin’s criterion:

{
K < Kc : no propagation
K = Kc : possible propagation

(1)

For a given crack geometry, there is a critical loadingσc
∞ such as: ifσ∞ < σc

∞ thenK(M) < Kc, ∀M and if
σ∞ = σ

c
∞, there is at least one pointM of the front that verifiesK(M) = Kc. We want to determine this stability

thresholdσc
∞ all along the propagation.

2. Numerical approach

2.1. Adimensionalization
Let us define the dimensionless problem for which the distance between cracks centersb is taken at 1. The

quantities of interest become:a1/b and a2/b , with a loading unitσ∞ = 1, lettingK(M) =
√

bσ∞ K̂(M), whereK̂ is
a dimensionless quantity.

2.2. Rice incremental formulae
Suppose that the crack geometry is slighty perturbed in its plane and consider a pointMi ∈ C = C1

⋃
C2.

Let us setα = (1 , 2) andβ = (1 , 2) , β , α.
Then Rice’s first formula reads ([7]):

δK̂α(Mi) =
1
2π

VP
∫

C

W(Mk,Mi)
D2(Mk,Mi)

K̂(Mk)[δa(Mk) − δ∗a(Mk)]ds(Mk)

=
1
2π

VP
∫

Cα

Wαα(Mi,Mk)
D2
αα(Mi,Mk)

K̂α(Mk)δa(α)
α (Mk)ds(Mk)

+
1
2π

∫

Cβ

Wαβ(Mi,Mk)

D2
αβ

(Mi,Mk)
K̂β(Mk)δa

(β)
α (Mk)ds(Mk)

(2)
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with:

δa(γ)
α (Mk) = δaγ(Mk) − (δaα(Mi)

−→nα(Mi)).
−→nγ(Mk) , γ = 1, 2

and whereWαγ(Mi,Mk) is a kernel expressing the effect of the advance ofMi ∈ Cα over the SIF at pointMk ∈ Cγ.
Rice’s second formula can be written of the form:

• if Mi ∈ Cα andMk ∈ Cα (points belong to the same crack front):

δWαα(Mi,Mk) =
D2(Mi,Mk)

2π
VP

∫

C

W(Mi,M)W(M; Mk)
D2(Mi; M)D2(M; Mk)

[δa(M) − δ∗∗a(M)]ds(M)

=
D2
αα(Mi,Mk)

2π
VP

∫

Cα

Wαα(Mi,M)Wαα(Mk,M)
D2
αα(Mi,M)D2

αα(Mk,M)
δa(α)
αα (M)ds(M)

+
D2
αα(Mi,Mk)

2π

∫

Cβ

Wαβ(Mi,M)Wαβ(Mk,M)

D2
αβ

(Mi,M)D2
αβ

(Mk,M)
δa(β)
αα(M)ds(M)

(3)

• if Mi ∈ Cα andMk ∈ Cβ (points belong to different crack fronts):

δWαβ(Mi,Mk) =
D2
αβ

(Mi,Mk)

2π
VP

∫

Cα

Wαα(Mi,M)Wαβ(M,Mk)

D2
αα(Mi,M)D2

αβ
(M,Mk)

δa(α)
αβ

(M)ds(M)

+

D2
αβ

(Mi,Mk)

2π
VP

∫

Cβ

Wαβ(Mi,M)Wββ(Mk,M)

D2
αβ

(Mi,M)D2
ββ

(Mk,M)
δa(β)
αβ

(M)ds(M)

(4)

with: δa(γ)
αβ

(M) = δaγ(M) − −−→Vi,k(M).−→nγ(M), where
−−→
Vi,k is a geometric transformation such as:

δa(γ)
αβ

(Mi) = δa
(γ)
αβ

(Mk) = 0.

These formulae give us the first order perturbation of the SIFand kernels, knowing the perturbationδa and the
initial SIF andW. Here comes the natural idea of an iterative procedure to predict the propagation. For this purpose,
it’s necessary to start from a configuration for which the quantities K̂α andWαγ are known. We assume that for two
circular cracks which are distant enough, the SIF and functionsWαγ are those for single crack that is :



K̂α(M) = 2
√

a/π

Wαα = 1

Wαβ = 0

(5)

This situation will serve as starting point of our method, corresponding to two circular cracks of sizea0/b << 1.

2.3. Propagation

Assumption is made that propagation is governed by the SIF sothat we have:

δa (M) = δamax

[
K(M)
Kmax

] β
(6)

whereδamax is a small given quantity.

It is presumed here that this law simulates brutal fracture if β≫ 1 and fatigue propagation otherwise.
Subjected to Irwin’s criteria, cracks are supposed to propagate in a quasistatic way under a remote loadingσ∞, varying
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at each numeric step such as:max
M ∈C

K(M)/Kc = 1. This condition ensures thatK(M) < Kc, ∀M ∈ C and that there is

always an “active” part of the front. The loading is thus recalculated at each numerical step:

σ∞
√

b =
Kc

maxK̂
M ∈C

(7)

We can define here the real nondimensionalized loading as follows:

√
b
σ∞

Kc
=

1

max
M ∈C

K̂(M)
(8)

3. Determination of the SIF along two coplanar circular cracks of same radius a1 = a2 = a

In this section, the SIF values obtained for two coplanar penny-shaped cracks in interaction are presented. Un-
fortunately, to our knowledge, no 3D analytical solution exists for this problem that should serve as benchmarks. For
weakly interacting cracks (that is the SIF remains close to their value for one single crack), Isida et al. [4], Fabrikant
[3], Kachanov and Laures [5], Chen and Lee [2] and Zhan and Wang [8] provide numerical results that are in agree-
ment with each other. We thus believe that those values must be correct and shall serve to validate our code and test
the influence of our numerical parametersa0/b, N andδa/a (section 3.1). For closely spaced cracks, the numerical
approximations are more questionable and few studies exist. Among them those of Fabrikant [3], Kachanov and
Laures [5] and Zhan and Wang [8] will serve to compare with oursimulations (section 3.2).

3.1. Weak interaction

Figures 2 reflect the influence of different parameters: the number of nodesN on each front, the initial adimen-
sionless radiusa0/b and the crack advanceδa/a. In this section, cracks are subjected to a uniform advance defined as

follows:
δa
a
= γ min

(
a ,
∆

2

)
.

All the figures 2 representKmax/K0 as a function of∆/2a in the samey-range to make easier comparisons. Moreover
it shall be noticed that the SIF of all points within the frameare less diffent than 10 % from the ones for a single
isolated crack.

The initial cracks should not be too small because of the incremental nature of the method, numerical errors would
accumulate. Typically, one shall choosea0/b between 0.05 and 0.1.

There is a few dependence on the number of points, provided thatN > 100. Moreover we notice thatK(s) presents
some irregularities forN < 160. Thus values ofN ≥ 160 shall be used. Since the CPU depends onN, we shall be
reasonable. TypicallyN = 160 seems a good compromise.

Once again due to the incremental nature of the method, we notice on figure (2c) thatδa/a shall be not too small
but enough to use the first order perturbation formulae. Typically,δa/a ∈ (0.025− 0.1) is acceptable.

We shall usea0/b = 0.1, N = 160,δa/a = 0.025 in the sequel.

3.2. Strong interaction

In the sequel, let’s define:l = min(a,∆).
It shall be noticed that the method is unstable for some set ofparameters. It is linked to the incremental nature of the
method and to the amplification ofK as soon as some angular points appear along the crack front. For instance, one
can notice on figure (3c) that forN = 160, (a0/b = 0.1, δa/l = 0.01 the value ofKmax diverges. In the sequel, we
consider those calculations as ill and arrange to find well suited set of parameters. A systematic study of numerical
stability is under consideration and will be published in the future.

From those results, we can conclude that the method is able togive qualitatively correct values ofK but quan-
titatively, is quiet sensitive to the numerical parameters. In particular for cracks as close as∆/2a < 10−4, a relative
dispersion (standard deviation/mean value) can be observed of approximately 100 % by choosing reasonable param-
eters (N = 100− 200,a0/b = 0.1− 0.2, δa/l = 0.01− 0.05). For higher values of∆/2a, the dispersion decreases. It is
of 50 % for∆/2a ∼ 10−2, 10 % for∆/2a ∼ 10−1, 1 % for∆/2a ∼ 0.5, 0.1 % for∆/2a ∼ 1.
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Figure 2: Dependance on the initial sizea0/b (a), on the numberN of points in the mesh (b), on the crack advance (c)
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Nevertheless we achieve to obtain very similar results thanprevious authors Fabrikant [3], Kachanov and Laures
[5] and Zhan and Wang [8] by choosinga0/b = 0.1, N = 160,δa/a = 0.025 (see figure 4 wherephi is the polar
angle). We shall use those parameters as reference in the sequel.
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Figure 4: Points corresponds to the values of Kachanov and Laures [5] given in table 1. Lines correspond to our simulations for a0/b = 0.1,
N = 160,δa/l = 0.025.

4. Propagation of two circular cracks in brittle fracture

We present here our results for simulations in brittle fracture. For numerical purposes, Irwin’s law can be remedied
by a Paris type law provided to choose an exponentβ large enough. In practice, aboveβ = 30, results are very close
and become independent ofβ. That is why the sole caseβ = 30 is presented here. Crack deformation is consequent
so that we had to set up a remesh procedure to redistribute nodes.

Figure (5a) shows the successive positions of the fronts fordifferent values of the dimensionless loadingσ∞

√
b

Kc
.

When the cracks are distant, threshold is reached for the entire set of points because the SIF values are almost uniform
along the fronts.

Whena/b reaches about 1/4, interaction between cracks leads to an increase in SIF of points near the opssite
crack. In consequence, the threshold is only achieved at these nodes whence a pronounced front deformation. It
should be noted that coalescence couldn’t be reached because of the values larger and larger of the SIF. Indeed, SIF
values are asymptotically infinite at the vinicity of the “interaction area”.

Figure (5b) represents the real loading in terms of cracks advance, characterized by the dimensionless quantity
aint/b for the case of coalescence and for the isolated crack. It canbe noticed that the loading strongly decreases
during propagation and tends to almost disappear when cracks are close to one another.

5. Conclusion and perspectives

The purpose of this work was to apply Lazarus’s numerical code to study the coalecence of circular cracks.
To validate the code, we compared the SIF values, obtained for different configurations, with those found in the
literature. Good agreements with Fabrikant [3], Kachanov and Laures [5] and Zhan and Wang [8] were achieved.
After validation with literature, brittle propagation wasexperimented. It shoud be emphasized that each front was
highly perturbed by the presence of the other crack. Our simulations showed cracks with a strongly elongated profile
within the “interaction area”. It can also be observed a significant decrease of the fracture loading as soon as the
interaction between cracks was felt.
The possibility of extending the code to more complex geometries is considered.
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