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Abstract

Consider two planar circular cracks embedded in an infiinitear elastic media and submitted to mode | tensile
loading. Bueckner-Rice weight functions theory allowsaspdate the stress intensity factor when the crack fronts
are slightly deformed in their plane. Using an incrementaharical method based on this theory, we study the
propagation of these two cracks when they interact each tthimg into account the non-linearities induced by their
deformations. The advantage of this method in comparisomaie standard finite element methods is that only the
crack fronts have to be meshed. Using a Griffith threshold fesvnotice important deformations of the crack fronts
are observed and a drastically decreasing threshold lgadtien the fronts approach each other.
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The present study focuses on the coalescence phenomemnen cftular cracks. What is the critical loading to
reach the coalescence? Is the crack advance facilitateth dine presence of the secondary crack? What is the shape
of the cracks during their propagation? Those questionsa@isidered in the present article. To do it accurately, the
main difficulty is to calculate the three-dimensional striggensity factors along all the fronts by taking into aatbu
the crack shape changes induced by the interaction betWweeamacks.

In the literature, we can find papers treating of interactiragks but they never take into account the cracks fronts
deformation during propagation (see{2] and [8]).

Here, the effects of the crack front shape changes are adatidependently of the edge effects. For this purpose,
two small cracks are considered, so we can make the assumtipdibthe medium is infinite and subjected to remote
loading. For this reason, methods based on integral equsatice adapted here: the sole cracked area is needed.
Moreover, in the present case of in-plane propagationjuisisnecessary to mesh the 1D outline of the cracks. Using
Bueckner-Rice formalism [7], the work of Bower and Ortiz fitpvides some examples of this approach in mode I.
More recently, Lazarus [6] developped a simplified varidrtheir method without significant loss of accuracy. All
these works only deal with a sole crack. In the present pageextend to two cracks in order to study their final
coalescence.



1. Objectives

Figure 1: Two circular cracks.

Let us consider two circular coplanar cracks embedded irsatnoipic elastic body (such as depicted in figure
[I). The aim of this paper is to predict the in-plane propagedif these cracks subjected to remote tensile stress
at infinity in brittle fracture. The method consists in cdoglthe Bueckner-Rice formalism with a propagation law
starting from a configuration for which the needed quargtititamely the stress intensity factor (SIF) along the front
and a certain kernel, are known. The procedure consistsfefet steps:

» Determination of the SIF for a given geometry:
Knowing the geometry and the loading, how to calculate thregdbdng the fronts?

» Propagation problem with a threshold:
In brittle fracture, it is assumed that the propagation lagiven by Irwin’s criterion:

K <K¢ : nopropagation (1)
K =K. : possible propagation

For a given crack geometry, there is a critical loadirfg such as: ifo., < ¢ thenK(M) < K¢, ¥ M and if
0w = 0%, there is at least one poim of the front that verifie& (M) = K. We want to determine this stability
thresholds, all along the propagation.

2. Numerical approach

2.1. Adimensionalization

Let us define the dimensionless problem for which the digtaretween cracks centépsis taken at 1. The
quantities of interest becoma;j/b and a,/b, with a loading unitr., = 1, lettingK(M) = Vb K(M), wherekK is
a dimensionless quantity.

2.2. Riceincremental formulae
Suppose that the crack geometry is slighty perturbed inatsgpand consider a poiM; € C = C1 | Co.
Letussetr = (1, 2) andB = (1, 2), B # «.

Then Rice’s first formula reads ([7]):

K 1 W(My, Mj) —
(5Ka(Mi) = Z VP %K(Mk)[éa(l\ﬂk) _ 6*a(Mk)]dS(Mk)
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with:
58 (M) = 6, (Mi) — (5au(M)Ao(M)). (M) . y=1,2
and wherel,, (M;, My) is a kernel expressing the effect of the advandgloke C, over the SIF at point € C,.

Rice’s second formula can be written of the form:

e if Mj € C, andM € C, (points belong to the same crack front):

2 . . .
W, (M, M) = 25 v [ ST TR foa(M) - 6. a(M)]ds()
D(Zl/(t(Mi7 Mk) WQQ(Mi’ M)WQQ(MK7 M)(Sal%)(M)dS(M) (3)
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» if Mj € C, andMy € C; (points belong to different crack fronts):

D2,(Mi, M) Wa (Mi, M)W,5(M, M
6\/\/(tﬁ(Mi7 Mk) — L fo ( Is ) ﬁ( ) k)éa(a)(M)ds(M)
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with: 6a(£(M) = 6a,(M) — \R(M).ﬁ;(M), where\m is a geometric transformation such as:

sal)(My) = 5al)(My) = 0.
These formulae give us the first order perturbation of thea@Ié kernels, knowing the perturbatiéa and the
initial SIF andW. Here comes the natural idea of an iterative procedure wigirthe propagation. For this purpose,
it's necessary to start from a configuration for which therdities K, andW,, are known. We assume that for two

circular cracks which are distant enough, the SIF and fonstiV,, are those for single crack that is :
Ko (M) = 2 \/a/n
Weo =1
Vvaﬁ =0
This situation will serve as starting point of our methodiresponding to two circular cracks of siag/b << 1.

()

2.3. Propagation
Assumption is made that propagation is governed by the Stratave have:

B
K(M)} ©)

Kimax

sa(M) = 6am[

wheredamax is a small given quantity.

Itis presumed here that this law simulates brutal fractuges> 1 and fatigue propagation otherwise.
Subjected to Irwin’s criteria, cracks are supposed to pyafsin a quasistatic way under a remote loadtngvarying



at each numeric step such at’&a)C( K(M)/K. = 1. This condition ensures thE{M) < K¢, ¥ M € C and that there is
€
always an “active” part of the front. The loading is thus teakated at each numerical step:

K
0w Vb= < (7)
maxK
MeC

We can define here the real nondimensionalized loading sl

O 1

Ko méK(M) ®)

3. Determination of the SIF along two coplanar circular cracksof ssmeradiusa; = a, = a

In this section, the SIF values obtained for two coplanamngeshaped cracks in interaction are presented. Un-
fortunately, to our knowledge, no 3D analytical solutiomséxfor this problem that should serve as benchmarks. For
weakly interacting cracks (that is the SIF remains closéédr tvalue for one single crack), Isida et al. [4], Fabrikant
[3], Kachanov and Laures [5], Chen and Lee [2] and Zhan andgvi@lhprovide numerical results that are in agree-
ment with each other. We thus believe that those values nauspiyect and shall serve to validate our code and test
the influence of our numerical parametasgh, N andsa/a (sectior{3.11). For closely spaced cracks, the numerical
approximations are more questionable and few studies. eRistong them those of Fabrikant [3], Kachanov and
Laures [5] and Zhan and Wang [8] will serve to compare withsionulations (sectioh 3].2).

3.1. Weak interaction
Figured 2 reflect the influence of different parameters: tmalver of nodedN on each front, the initial adimen-
sionless radiugg/b and the crack advanéa/a. In this section, cracks are subjected to a uniform advaafieet as

follows: oa _ min|a A
" =y 25

All the figured2 represendax/Ko as a function ofA/2a in the samey-range to make easier comparisons. Moreover
it shall be noticed that the SIF of all points within the fraare less diffent than 10 % from the ones for a single
isolated crack.

The initial cracks should not be too small because of theeimental nature of the method, numerical errors would
accumulate. Typically, one shall choa&g/b between @5 and O1.

There is a few dependence on the number of points, providgeditls 100. Moreover we notice th#i(s) presents
some irregularities foN < 160. Thus values ol > 160 shall be used. Since the CPU dependdlpwe shall be
reasonable. Typicallil = 160 seems a good compromise.

Once again due to the incremental nature of the method, vieenan figure[(Pc) thaga/a shall be not too small
but enough to use the first order perturbation formulae. cBlpj, 6a/a € (0.025- 0.1) is acceptable.

We shall useag/b = 0.1, N = 160,5a/a = 0.025 in the sequel.

3.2. Strong interaction

In the sequel, let's definé:= min(a, A).

It shall be noticed that the method is unstable for some spatmeters. It is linked to the incremental nature of the
method and to the amplification &f as soon as some angular points appear along the crack flanhdtance, one
can notice on figurd_{3c) that fdd = 160, @g/b = 0.1, 6a/l = 0.01 the value oKux diverges. In the sequel, we
consider those calculations as ill and arrange to find wétédiset of parameters. A systematic study of numerical
stability is under consideration and will be published ie thture.

From those results, we can conclude that the method is alg&doqualitatively correct values & but quan-
titatively, is quiet sensitive to the numerical parameténsparticular for cracks as close Ag2a < 1074, a relative
dispersion (standard deviation/mean value) can be obdehapproximately 100 % by choosing reasonable param-
eters \ = 100-200,a9/b =0.1-0.2,6a/l = 0.01- 0.05). For higher values af/2a, the dispersion decreases. Itis
of 50 % forA/2a ~ 1072, 10 % forA/2a ~ 1071, 1 % forA/2a ~ 0.5, 0.1 % forA/2a ~ 1.
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Figure 2: Dependance on the initial s&g/b (a), on the numbeN of points in the mesh (b), on the crack advance (c)
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Nevertheless we achieve to obtain very similar results gramious authors Fabrikant [3], Kachanov and Laures
[5] and Zhan and Wang [8] by choosireg/b = 0.1, N = 160,5a/a = 0.025 (see figur€l4 wherghi is the polar
angle). We shall use those parameters as reference in thelseq
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Figure 4: Points corresponds to the values of Kachanov amdeksd5] given in table 1. Lines correspond to our simulatidor ag/b = 0.1,
N = 160,5a/l = 0.025.

4. Propagation of two circular cracksin brittlefracture

We present here our results for simulations in brittle fueet For numerical purposes, Irwin’s law can be remedied
by a Paris type law provided to choose an expopdatge enough. In practice, aboge= 30, results are very close
and become independent@f That is why the sole cagg= 30 is presented here. Crack deformation is consequent
so that we had to set up a remesh procedure to redistributsnod

b
Figure [Ba) shows the successive positions of the frontdiffarent values of the dimensionless Ioadtﬂg£

When the cracks are distant, threshold is reached for tlre et of points because the SIF values are almost unlform
along the fronts.

Whena/b reaches about/4, interaction between cracks leads to an increase in Sloiotpnear the opssite
crack. In consequence, the threshold is only achieved aethedes whence a pronounced front deformation. It
should be noted that coalescence couldn’t be reached keeohtie values larger and larger of the SIF. Indeed, SIF
values are asymptotically infinite at the vinicity of theténaction area”.

Figure [Bb) represents the real loading in terms of crackarck, characterized by the dimensionless quantity
aint/b for the case of coalescence and for the isolated crack. Ibeamoticed that the loading strongly decreases
during propagation and tends to almost disappear whensexekclose to one another.

5. Conclusion and per spectives

The purpose of this work was to apply Lazarus’s numericaédodstudy the coalecence of circular cracks.
To validate the code, we compared the SIF values, obtainedifferent configurations, with those found in the
literature. Good agreements with Fabrikant [3], Kachanod Baures [5] and Zhan and Wang [8] were achieved.
After validation with literature, brittle propagation wagperimented. It shoud be emphasized that each front was
highly perturbed by the presence of the other crack. Ourlsitioms showed cracks with a strongly elongated profile
within the “interaction area”. It can also be observed aificant decrease of the fracture loading as soon as the
interaction between cracks was felt.
The possibility of extending the code to more complex geoiegets considered.
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