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Abstract  Hydrogen-assisted fracture (HAF) of metals is the problem of major concern in structural 
integrity. HAF is rate limited by hydrogen accumulation in fracture sites in metals. Diffusion is a relevant 
stage of transport that supplies hydrogen to fracture process zones. Addressing the purposes of HAF analysis, 
modelling of hydrogen diffusion with account for physical-mechanical fields and factors of material 
microstructure (hydrogen trapping) is revisited. Generalised system of equations of trapping-affected 
hydrogen diffusion is derived from the kinetics principles. For circumstances, which are relevant to plenty of 
engineering HAF cases, specialised models of “microstructure informed” stress-strain-assisted hydrogen 
diffusion in metals are retrieved and collated under the prism of their suitability for HAF analyses.  
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1. Introduction 
 
Hydrogen is often the key factor in environmentally assisted fracture of metals, as far as it may be 
present per se in the environment or discharge in cracks due to favourable local electrochemistry 
[1]. Harmful effects of hydrogen on metals (“hydrogen embrittlement”) form the long-standing 
problem of the mechanics of materials. Hydrogen transport to damage sites is ubiquitous component 
of every hydrogen assisted fracture (HAF) process, which is rate-limited by hydrogen delivery to 
meet requirements of operating fracture mechanism. A series of kinetic processes involved in HAF 
have been identified, among which hydrogen diffusion has been substantiated as the governing 
mode of hydrogen supply to fracture nuclei [1-3]. Continuum modelling of hydrogen diffusion has 
been focused as the key issue of HAF studies and their engineering applications [1,3-6]. 
 
Concerning hydrogen behaviour in metals, important disconformities [2,7,8] were witnessed 
between experience and the Fick’s diffusion laws. Various issues have been pointed out as potential 
causes of these inconsistencies, and several analyses have been performed culminating in 
continuum equations of diffusion built up from microscopic or phenomenological considerations 
[1,4-11]. However, comprehensive accounting for a variety of potentially influencing factors is 
complicated undertaking, and numerous specialised diffusion models, which attended to different 
microstrictural features, have been raised [8]. An outlook of hydrogen diffusion modelling for the 
purposes of HAF analysis is here presented.  
 
2. Background Theory of HAF [1,5] 
 
HAF is considered a result of synergic action of stress, strain and hydrogen amount in material. 
Fracture event takes place in a locus identified by position vector x, when hydrogen concentration C 
accumulated there over time t reaches the critical level Ccr dependent on stress-strain state:  
 

 ( )),(),,(),( ttCtC pcr xεxσx = , (1) 
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where σ  y εp are, respectively, the tensors of stress and plastic strain. Condition of contact between 
the concentration and the criterial surfaces, C(x,t) and Ccr(x,t), respectively, which reads 
 

 ( ) xxεxσxx ∂=∂∂ ),(),,(),( ttCtC pcr , (2) 

 
accompanies the fracture criterion (1) to form the system of equations to define the location xcr and 
time tcr of HAF event [12]. Hydrogen transport towards fracture sites is dominated by diffusion, 
which defines the left-hand parts of Eqs. (1) and (2).  
 
It is known that material damage is associated with crystal imperfections, and that they act as 
hydrogen traps (T-sites) for H atoms where their free energies GT are less than that for ordinary 
lattice (L-)sites GL (Fig. 1a). The ratio at.H/at.Me can there substantially exceed that in L-sites 
[2,3,4,6], as follows from the equilibrium partition of hydrogen between T- and L-sites [2,4,6,13] 
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where θX = CX/NX is hydrogen saturation of X-type sites (X = L or T) defined by volume 
concentrations of these sites in metal, NX, and of hydrogen allocated to them, CX, so that the total 
concentration C = ΣCX, Eb = GL – GT is the binding energy of hydrogen to trap, and β = (RT)–1 is 
the Boltzmann’s factor in terms of the gas constant R and temperature T. Then, e.g., for steels at 
usual HAF occurrence conditions T ≈ 300 K and θL ∼ 10–6 at utmost [3,6], reported values of Eb, 
being approximately in the range from 0.25 to 1.5 eV [2,14,15] yield K ≥ ~ 104 and θT/θL ≥ ~104. 
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Figure 1. Schematics of (a) potential-position trace G(x) for H in a lattice with different type sites L and T 
(or A and B); (b) combination of diffusion jumps between sites of different kinds (A – circles, B – quads) 
to evaluate partial fluxes; (c) distortion of lattice potential G(x) by superposed field U; (d) combination of 

hops to establish partial balances. 
 
To this end, whenever L/T-partition of hydrogen in volume element d3x around a point x is in 
equilibrium, all partial concentrations Ci(x,t) (i = 1,2,…) are related one to another via Eq. (3), so 
that all them, including the one corresponding to crystal imperfections responsible for HAF micro-
mechanism, are biunivocally related to the total one C(x,t). In this case, continuum description of 
local HAF event by Eqs. (1)-(2) holds, as well as it may be rewritten explicitly in terms of the 
responsible partial concentration CX merely by changing there the variable according to Eq. (3). 
Otherwise, HAF should be described taking in Eqs. (1)-(2) responsible concentration CX instead of 
C, and accounting for L/T-exchange kinetics in analysis of hydrogen transportation. 
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At any rate, hydrogen delivery to fracture sites proceeds by thermally activated hopping of H atoms 
between available sites in metal, i.e., by diffusion that turns out to be affected by trapping 
[2,4,6,7,10,13]. In this context, diffusion modelling is crucial for HAF analysis, prediction and 
control, as far as, combining with HAF experiments able to reveal fracture initiation time tcr and 
location xcr, this allows to specify the critical concentration Ccr(σ ,εp), i.e., the fracture criterion (1), 
and to employ this criterion for assessment of fracture time of structures [12,16].  
 
3. Modelling of Hydrogen Diffusion with Trapping: Backgrounds Revisited 
 
Both atomistic and thermodynamic arguments have been used to derive diffusion equations [1,4-
11,13,15]. These approaches are not contradictory, but complementary [11] and capable to converge 
into the same field equations with certain insights about specific factors. Concerning traps, they 
were incorporated into resulting field equations in some cases via plausible postulating [4,6,7,17], 
but not from background principles (excepting few attempts with limited offspring [10,18,19] for 
HAF). In this section, diffusion equations grounding upon diffuser jumps probabilities is revisited. 
 
3.1. Flux Equations  
 
Isothermal diffusion by particles hopping among sites of kinds A and B is considered adopting the 
techniques used elsewhere [11,13,15,18-20]. Concerning the flux of the species through unit surface 
S normal to x-axis and situated there at position x, eight possible elementary steps can be grouped in 
pairs as shown in Fig. 1b, where lIJ (I,J = A or B) are jump distances between specified sites, so that 
each couple renders the net flux JA\B by forth and back hops between transboundary A and B sites, 
which are here diffuser releasers and receptors, respectively. The transition frequency ΓAB from A-
sites located at x′ to B-ones at x″ per unit time depends on attempt frequency ΩAB controlled by 
particle vibration frequency at given site ω0A and by potential barrier ΔEAB = EAB – GA, where EAB is 
the free energy at saddle point of lattice potential G(x) between A and B (Fig. 1a). The frequency of 
successful hops depends on combined probability YB, which merges the probabilities γB that 
encountered receptor sites are the B-type ones and ΘB that they are empty, that is 
 

 [ ] [ ]xBxABAB Y ′′′= ΩΓ  at ( )AB
x
AAB EΔβωΩ −= exp0 , BBB ΘY γ= , γB = NB/N , ΘB = 1 – θB, (4) 

 
where x

AA
x
A f00 ωω =  to reckon up the fraction fA

x of hops that contribute to the flux through S having 
directions towards it, and N = ΣNi is the volume concentration of all available sites. (Note, that 
process parameters fA, lAB and ΔEAB, according  to the crystal symmetry, can depend on the x-axis 
orientation with respect to the lattice, causing this way diffusion anisotropy. They are isotropic, e.g., 
for interstitial sites in cubic lattice, and can be for “spherical” point-wise defects there, yielding fA = 
f = 1/6 irrespectively of orientation.) Jump probability to any site is assumed to be not conditioned 
by that to another. 
 
When some imposed potential field U(x) distorts the lattice relief G(x), Fig. 1c, ΔEAB depends on 
jump sense, which biases the hopping probabilities. This implies modification of hopping frequency 
(4) with the factor exp(±½βΔx∇xU), where the lower/upper sign corresponds to jumps pro-/counter-
wise the x-direction, Δx = x′ – x″, and ∇x is the x-component of a gradient.  
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Reckoning up the hops of particles from A to B sites through control surface S at position x, using 
Taylor series expansions of involved variables about x with respect to Δx and truncating them at the 
second term, the net partial transfer by forth and back A→B jumps can be obtained 
 

 ( ){ }UYYCCYd BBAABABBA ∇−∇−∇−= β\J , (5) 

 
where the diffusivity 2

ABABAB ld Ω=  when Δx = lAB is taken. The total diffuser flux vector J is the 
sum of the net partial ones JA\B over all pairs of site kinds A and B, which reads:  
 
 ( )∑∑ ∇−==

BA
BA

U
ABAB

BA
BA YCeCYd

,,
\ /ln βJJ . (6) 

 
This holds for arbitrary number m of site types, e.g., the L-sites and (m – 1) kinds of traps Ti 
(i=1,…,m – 1). Presented flux equations advance those derived elsewhere [18] in that arbitrary 
occupation degrees θi (i = 1,…,m) towards saturation are here admitted for all kinds of sites, and 
that alteration of lattice potential relief by some superposed field U(x) is taken into account.  
 
Description of diffusion in terms of specified partial fluxes can be supplemented with mass-balance 
relation being now the usual continuity equation: 
 

 ( )[ ]

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

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∇−∇⋅∇=⋅−∇=

∂ ∑ −
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t
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,
ln),( βJx . (7) 

 
3.2. Mass Balance  
 
In contrast to the one-level system (single kind of sites), Eq. (7) does not accomplish description of 
diffusion in terms of concentrations Ci (i = 1,…,m) for the m-level case (m > 1) where a system of m 
balance equations must be built up. This requires to combine the same diffusion steps as shown in 
Fig. 2d to gather all forth and back jumps across S that fill/vacate the sites of the sort A in a region 
Δx around a point x by surmounting saddle points at x ± Δx/2. Desired equations are derived here 
following the random walk theory and its continuum implementation [19,20]. 
 
Considering two-level system and addressing the net species supply into A-sites in a domain Δx∍x 
by overcoming saddle point at x – Δx/2 from all outer A- and B-sites, involved diffusion steps 
include the net income flux JA\A, and the resulting BA-exchange flux, which is as follows:  
 

 [ ] [ ] [ ] [ ]{ }xxBxABABA
Ux

xAxxBAABB
UxB

A YΩlCeYΩlCeJ xx
Δ

Δβ
Δ

Δβ
−

∇
−

∇− −= 2
1

2
1 . (8) 

 
The net exit from A-sites in a domain Δx towards all sites beyond x + Δx/2 is defined similarly. 
Then, balancing transitions at both extremes of Δx, using power series expansions and disregarding 
higher order terms with Δx, mass balance for the species dwelling in A-sites can be derived. 
However, calculations in general terms are overly long and tedious, so that now we content 
ourselves with particular case when the sites characteristics are isotropic and uniform, i.e., jump 
frequencies Ω… and lengths l… are constant, for which the following is deduced:  
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where )/(/ 21

ABABABAB fNldNfk == − Ω . Similarly, balance for a diffuser dwelling in B-sites can be 
derived rendering the result that differs from Eq. (9) by permutation of the site labels A and B. This 
description is extensible for arbitrary number m of site types by taking in the right-hand part of Eq. 
(9) the sum over all site kinds from a set {B;B≠A}. The last term in brackets in Eq. (9) represents 
transitions between the nearest neighbour sites of different types in a volume d3x around a point x.  
 
This way, the system of nonlinear differential equations (9) is derived for partial concentrations Ci 
(i=A,B,… or 1,…,m). Balance in terms of total concentration C = ΣCi can be obtained summing up 
the equations of the system (9) over site kinds totality {A}. After all, the result coincides with Eq. 
(7). One may notice here the similarity with equations built up by Leblond-Dubois [10] following 
distinct approach based on construction of Boltzmann type transport equations. Present derivation 
advances the previous one [19] with respect to the sites saturability, their concentrations non-
uniformity, and the contribution of a field U.  
 
3.3. Equilibrium 
 
The chemical potential µA of hydrogen residing in metal in sites of whichever type A is [13,15]  
 

 ( ))1(ln)( AAAAA RTG θθθµ −+= , (10) 
 
where AG  is the free energy at the site with account for imposed potential U, UGG AA +=  (Fig, 
1c). At equilibrium, µΑ must be the same throughout a solid and in equilibrium with the input 
fugacity of hydrogen imposed by an environment, e.g., H2 gas at pressure p that has chemical 
potential of hydrogen µp = const. Then, for all sites at equilibrium µA = µp, which yields  
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where ( )AA GS β−= exp  is the solubility factor. From the kinetics point of view, the numbers of 
forward and backward jumps between the nearest neighbour sites of distinct types in equilibrium 
are equal to each other in a volume d3x around a point x. This is expressed by detailed balance 
relation [20] being nothing else than equilibrium partition Eq. (3), which gets now more forms: 
 

 ABABBABA YCYC ΩΩ =  or ABABBABA YdCYdC =  or ( ) ( ) ( )[ ]BABAAB GG −−=− βθθθθ exp11 . (12) 
 
One can verify that fluxes JI\I (I = A,B,…) are nil at equilibrium by virtue of Eq. (11), and that the 
sum JA\B + JB\A, A ≠ B, does the same with the aid of detailed balance (12). So, the total flux (6) is 
nil at equilibrium. As well, Eq. (9) at equilibrium yields ∂CA/∂t = 0 for all A-s by virtue of Eqs. (11) 
and (12), being the last term in brackets in Eq. (9) a paraphrase of the detailed balance (12). 
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4. Special Field Equations and Retrieval of the Known Models 
 
4.1. One-level System 
 
In the case of diffusion over identical sites, say L-sites, Eqs. (5), (6), and (9) in the absence of any 
potential field U(x) render Fick’s laws for isothermal diffusion with lattice diffusivity DL = dLL = 
ΩLLlLL

2 [11,13,15]. As well, they lead to the equations of uphill diffusion under imposed potential 
U, e.g., due to lattice dilatation under hydrostatic stress σ, when U = – VHβσ, VH is the partial molar 
volume of H in metal, as they are known both for dilute solutions at θ << 1 [1,2,11,21] (hereafter 
the site type labelling is skipped wherever convenient) and for arbitrary degree of saturation θ = 
C/N [22]. For the latter more general case, corresponding reduction of Eq. (5) reads:  
 

 ( )[ ]UCCDL ∇−+∇−= θβ 1J . (13) 
 
The balance equation is established then by common continuity relation, cf. Eq. (7).  
 
4.2. Multi-level System, Implicit Description of Trapping: The Variable Solubility Model 
 
Since the origin of potential U(x) was not relevant in derivations, it can incorporate the intrinsic 
own lattice potential relief with variable depths of wells at interstitial sites, which yields variable 
solubility S(x) according to the well bottom )(xG at location x. This can be complemented with 
variable saddle point energy E(x). Then, skipping site labels that become irrelevant, both Eqs. (5) 
and (6) can be rewritten in terms of the non-uniform both solubility and diffusivity as follows:  
 

 ( ) ( ) 
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where (cf. expressions (4), (5) and (11)) 
 

 ( )[ ] 20 )()(exp)()( lGED xxxx −−= βω   and  ( ))(exp)( xx GS β−= . (15) 
 
With these flux equations, the mass balance is established by usual continuity relation, cf. Eq. (7).  
 
This mode to describe diffusion, named [10] the non-uniform solubility model, deals with a system 
where neither interstitial positions nor saddle points are all identical, and so, it treats in effect a 
multilevel system. Though, specific sites are here indiscernible within each elementary volume d3x 
around a point x, where the values )(xG  and E(x) can be interpreted as effective averages over 
different sites with account for their amounts in regions, which are small in macroscopic sense, but 
large enough in microscopic one. Such averaging counts implicitly on equilibrium partition of a 
diffuser between sites of different kinds in d3x disregarding traps filling/emptying kinetics.  
 
Anyhow, excepting the term (1 – θ) that accounts for sites saturability, these equations render fairly 
the same as established for dilute solutions (θ << 1) elsewhere booth within the frameworks of 
microscopic kinetics [10] and macroscopic thermodynamics [1,5,9]. To this end, built up upon 
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phenomenological account of measurable variables, but not relying on specification of atomic 
mechanisms, the latter approach extends the suitability of hydrogen diffusion description by means 
of Eq. (14) over much wider range of circumstances, such as non-uniformity of alloy composition, 
transient external fields (e.g., mechanical stresses), simultaneous (e.g., strain induced) phase 
transformations, cold working, non-isothermal diffusion (Soret effect), etc. [1,5,9,11]. Till now, 
these factors could not be incorporated satisfactorily in diffusion models via kinetics considerations. 
From another side, diffusion modelling accounting for the kinetics of H transitions between 
different microstructural entities (“sites”) is not feasible on the way of thermodynamics.  
 
4.3. Multi-level System, Explicit Description of Trapping  
 
When conditions of system equilibrium are not fulfilled, it evolves to equilibrium. Various 
transitions can be discerned there. One of them is rather long-distance transfer that drives to global 
equilibrium via fluxes represented by respective equations of the previous section. Besides, 
localised processes of H exchange between the nearest sites of different kinds are there involved, 
too, which tend to local equilibrium expressed by the detailed balance (12). Corresponding process 
rates, which may depend on both intrinsic (e.g., vibration frequency and jump length) and extrinsic 
(such as diffusion distance) factors, may be so distinct, that in the time scale of interest (e.g., for 
membrane permeation or for hydrogen delivery to fracture locations) some processes may have 
attained equilibrium while others have not yet.  
 
4.3.1. Diffusion under Traps-Lattice Equilibrium 
 
One possibility of the mentioned partial equilibrium is when detailed balance is quickly reached and 
maintained during diffusion, e.g., when relatively long diffusion distances xcr with corresponding 
times t ∼ xcr

2/(4D) [23] are of interest. Suggested by Oriani [17] to be kept during diffusion, the 
hypothesis of local equilibrium assumes that detailed balance (12) holds for all nearest neighbour A 
and B sites, so that partial balance (9) in the case of multiple B-sites yields the following: 
 

 ( )( )[ ] ( )( )[ ]∑ ∇⋅∇+∇⋅∇=
∂

∂

B
BB

U
BB

B

A
ABAA

U
AAAA

A YCeCY
C
CdYCeCYd

t
C /ln/ln ββ . (16) 

 
The global balance (7) for two-level system (for multi-level one the sum is to be taken over all site 
types) under local equilibrium is reduced to the next: 
 

 ( ) ( ) 
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Accompanying Eq. (17) with the detailed balance (12), which may be solved with respect to CB,  
 

 
( )

( )BAb
E
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AAB
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/11
/ β , (18) 

 
the system of partial-differential equations of diffusion with trapping converts into the system of 
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one partial-differential and a series of algebraic equations (17) and (18) with respect to partial 
concentrations CI (I = A,B,…). This system transforms into the sole differential equation (17) with 
respect to CA by substitution there CB according to Eq. (18).  
 
It can be verified that, labelling A ≡ L to be lattice sites and B ≡ T traps, at θL << 1 and γT << γL ≈ 1, 
and so, YT << 1, which are usually met in HAF of engineering alloys [6], and dBX/dAX ∼ exp(–βEb) < 
∼10–4 at Eb > 0.2 eV [2,14,15] for X = L or T, Eqs. (17)-(18) convert into the equation of trap-
assisted diffusion [4] as implementation of Oriani’s [17] equilibrium hypothesis: 
 

 ( )[ ]LLLL
L

L

T SCCD
t
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C ln1 ∇−∇⋅∇=

∂
∂









∂
∂

+  at ( )LLTLT KCNKNCC += / . (19) 

 
4.3.2. Diffusion with Account for Lattice/Trap Exchange Kinetics 
 
The system of equations (9), which describes hydrogen diffusion affected by traps in rather general 
terms, is tough to solve. Taking advantage of circumstances usually met in HAF, it can be reduced 
to more suitable forms. Namely, θL << 1, γT << γL ≈ 1, and thus YT << YL ≈ 1, as well as dTX/dLX << 
1 (X = T and L) usually hold in HAF, but the matter of local L/T-equilibrium is not ensured a 
priori. Then, taken for granted that T→T jumps are fairly improbable, the total flux J, Eq. (6), and 
the partial balance for CT, Eq. (9), can be assessed as follows: 
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LTT CdCYd
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1 J . (21) 

 
Accordingly, if neither ratios of partial concentrations CT to CL and their gradients nor the 
divergence of lattice-hopping flux JL\L are too large to forbid the disregard of terms with dTX/dLX << 
1 and YT << 1 in Eqs. (20) and (21), then Eqs. (17)-(18) convert into the system of partial- and 
ordinary-differential equations postulated by McNabb-Foster [7], which is now extended for 
variable solubility SL: 
 

 ( ) ( )[ ]LLLLTL SCCDCC
t

ln∇−∇⋅∇=+
∂
∂ ; ( )( ) TTLLTTLT

T CkCCNNk
dt
dC

−−= . (22) 
 
Obviously, these specialised equations of trap-affected diffusion are additively extensible for the 
case of multiple trap kinds Ti (i = 1,…) as the antecedent general Eqs. (7) and (9) do.  
 
The system of equations (22) with respect to a number of concentrations Ci (i = 1,…,m) may 
complicate numerical simulations of diffusion making corresponding discrete approximations of the 
boundary-value problems oversized. However, the second of Eqs. (22) has the closed-form solution 
 

 







+















∫








∫−= ∫ 0

0 00
)()(exp)(exp T

t

T

t

TT CdQdPdPC ξξζζζζ
ξ

, (23) 



13th International Conference on Fracture 
June 16–21, 2013, Beijing, China 

-9- 
 

where  /)()( NtCkktP LLTTLT += , NtCNktQ LTLT /)()( = , and 
0

0
=

=
tTT CC  is the initial condition. 

Substitution of the expression (23) into the first of Eqs. (22) reduces the problem to the sole integro-
differential-equation with respect to CL. Its computational implementation, e.g., via available finite 
element routines [4-6], requires modification only of calculation of concentration capacity matrices.  
 
5. Summation: Suitability of Models for HAF Analysis 
 
The system of equations of diffusion with trapping, which is derived here from kinetics principles, 
provides generalisation of pertinent previously suggested models, as well as it retrieves special ones 
typically either raised on the thermodynamics bases or postulated partially from microscopic 
arguments. This way, simpler equations of specialised models gain clarification of involved 
approximations and, respectively, of the requisites of their applicability. This allows reasoned 
pondering of their advantages and limitations to select optimal models for HAF-case analyses.  
 
Demonstrated relation of general kinetics-based equations of trapping-affected diffusion with 
thermodynamics-grounded variable-solubility model visualises the incorporation of traps in this 
latter. However, its solid thermodynamics foundation makes it capable of accounting of wider 
variety of factors that influence hydrogen diffusion in metals, but are not amenable to incorporation 
in kinetics analysis. These are phase transformations under loading (e.g., γ→α transition in steels), 
variable alloy composition, thermodiffusion, and all microstructural features, such as inclusions, 
grain boundaries or dislocations, which, strictly speaking, can hardly be treated as point-wise lattice 
irregularities that the majority of kinetics-based models deal with. With variable solubility model, 
numerous factors of H behaviour in metals can be incorporated in HAF analyses and simulations 
through macro-level determined, i.e., apparent or measurable, diffusivities and solubilities 
dependent on microstructure, cold working, etc. It is the advantage of this model in addition to its 
linearity, which substantially streamlines computations. However, the prominent deficiency of this 
model is inability to describe dissymmetry between hydrogenation and dehydrogenation kinetics. 
Meanwhile, the significance of this fault for HAF analysis seems to be case-dependent, e.g., it may 
be irrelevant whenever only monotonic hydrogenation occurs, but can be substantial under load or 
hydrogenation cycling. As well, this model discounts the lattice/trap exchange kinetics, which may 
be desired in particular HAF analyses. The importance of these deficiencies is also case-dependent, 
as far as HAF involves definite diffusion distances towards fracture sites xcr, and corresponding 
diffusion times tdif ∼ xcr

2/(4D), which may be short or long compared with the characteristic time of 
approaching trap-lattice equilibrium tT-L ∼ kTL + kLTCL/N according to the solution (23). E.g., the role 
of trap-filling kinetics may be noticeable for hydrogen assisted crack growth in high-strength or 
brittle materials, where sub-micrometer diffusion distances of the order of crack-tip opening 
displacement are involved [1,5], and it can be irrelevant otherwise.  
 
Concerning diffusion models that account for trapping explicitly, they lack of the majority of 
attractions of the preceding one, as far as they cannot account for a series of cited diffusion-
influencing factors. In return, they describe hydrogenation-degassing dissymmetry and a series of 
other trap-related abnormalities of diffusion. However, this improvement raises computational 
expenses of managing non-linear partial-differential or integro-differential equations. These models 
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count on micro-level determined mobility, binding and kinetics rates characteristics, which 
complicates their implementation in engineering. Regarding suitability for HAF description of 
explicit models of trapping-affected diffusion with or without lattice-trap equilibrium, this is 
basically the matter of transportation distances and corresponding times relevant to HAF process, so 
that whenever they are short, account for lattice-trap exchange kinetics may be advisable. However, 
one ought to be aware that large concentration gradients that can be met, e.g., in the proximity of 
hydrogen entry surface at short diffusion times can invalidate the requisites of smallness of the 
ratios of partial concentrations and their gradients, which justify the reduction of general system of 
diffusion equations (9) to the special case (22) of McNabb-Foster.  
 
At any rate, recognising that trap populations may be affected by plastic deformation εp, NT = 
NT(εp), and that the most relevant field for HAF is the stress field, U ∝ σ, all considered equations 
describe the process of stress-strain assisted diffusion [1,4-6,16]. This way, present study gives an 
outlook of “microstructure informed” models of stress-strain affected hydrogen diffusion able to 
account for various physical variables relevant to HAF.  
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