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Abstract  By introducing a conformal mapping and using the complex variable function method, the 
fracture behavior of a lip-shape crack in one-dimensional hexagonal quasi-crystals materials is investigated 
under anti-plane loading at infinity. The expressions for stress, strains, displacements and field intensity 
factors of the phonon and the phason fields in the vicinity of the crack tip are obtained. When the height of 
the lip-shape crack approaches to zero, the present results can be reduced to the solutions of the Griffith 
crack 
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1. Introduction 
 

The discovery of quasi-crystals (QCs) in 1984 is a significant breakthrough for condensed 
matter physics, which won the Nobel’s award in 2011 [1]. A theoretical description of the deformed 
state of QCs requires a combined consideration of interrelated phonon and phason fields. The 
phonon field describes the motion of lattices in physical space, while the phason field describes 
quasiperiodic arrangement of atoms in the complementary orthogonal space, which interact with 
one another. Since the discovery of QCs, they have attracted the extensive attention of researchers 
engaged in experimental and theoretical work. A quantity of significant achievements of QCs have 
been done [2-11] recent years. Experiments have shown that quasi-crystals are quite brittle and the 
defects of quasicrystalline materials have been observed [12,13]. When quasicrystalline materials 
are subjected to mechanical stresses in service, the propagation of flaws or defects produced during 
their manufacturing process may result in premature failure of these materials. Therefore, the study 
of crack problem of quasicrystalline materials is meaningful both in theoretical and practical 
applications. 

At present, the study on the fracture problems of quasicrystalline materials is mainly confined to 
relatively simple defects. Thus, the elastic problem of one-dimensional (1D) hexagonal quasicrystal 
materials becomes the primary object and made many of significant achievements. A moving screw 
dislocation in 1D hexagonal QCs was investigated [14]. The exact solutions of a semi-infinite crack 
and two semi-infinite collinear cracks in a strip of 1D hexagonal QCs were obtained [15,16]. The 
interaction of between dislocations and cracks in 1D hexagonal QCs were considered by the 
complex variable function method. Very recently, the analytical solutions of several complicated 
defects such as cracks originating from holes in 1D hexagonal QCs were obtained [17-19].  

In this paper, by using the Stroh-type formulism for anti-plane deformation in 1D hexagonal 
QCs, the fracture mechanic of a lip-shape crack in a 1D hexagonal QC is investigated under 
uniform remote anti-plane shear loadings of the phonon field and the phason field. By introducing a 
conformal mapping and using the complex variable function method, which is further solved 
analytically. The expressions for stress, strains, displacements and field intensity factors of the 
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phonon and the phason fields in the vicinity of the crack tip are obtained. The exact solutions of the 
stress intensity factors for the phonon field and the phason field are obtained respectively, which are 
very useful in practice. 
 
2. Basic equations  
 

When defects parallel to the quasi-periodic axis of 1D hexagonal QCs exist, the geometrical 
properties of the materials will be invariable along the quasi-periodic direction. In this case, the 
corresponding elasticity problem can be decomposed into two independent problems, i.e., a plane 
elasticity of conventional hexagonal crystal which can be solved by the route of the linear elastic 
theory [19] and an anti-plane phonon-phason field coupling elasticity problem [4]. Thus, we only 
need consider the latter one. The physical problem considered in this paper is shown in Fig. 1.  
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Figure 1. A lip-shape crack in 1D hexagonal QCs. 
  

It is assumed that the quasi-periodic direction of 1D hexagonal QCs is along the positive 

direction of 3x axis. In this case, all field variables are independent of 3x and we have the following 

deformation geometrical equations [4] 

,2,333 jjj uε == ε  ,,33 jj vw =                                               (1) 

the equilibrium equations                                            

,0,3 =jjσ    ,0,3 =jjH                                                      (2) 

and the generalized Hooke’s law 

,,33,3443 jjj vRuC +=σ    ,,32,333 jjj vKuRH +=                                  (3) 

where 1,2j = ; the repeated indices denote summation; a comma in the subscripts stands for a 
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partial differentiation; ijσ , 3 jε , 3u  are the stress, strain and displacement of the phonon field, 

respectively; ijH , 3 jw , 3v  are the stress, strain and displacement of the phason field; 44C  and 

2K  are the elastic constants of the phonon field and the phason field, respectively; 3R  is the 

phonon-phason coupling elastic constant. 
Substituting Eq. (3) into Eq. (2) ,then we can obtain the following result 

2
0 ,?B u 0                                                               (4) 

where 2∇  indicates the two-dimensional Laplace operator, and 

 [ ]3 3, ,Tu vu = 44 3
0

3 2

,
C R
R K

B
轾
犏=
犏
臌

                                               (5) 

where the superscript T represents the transpose. 

Because 2
44 2 3 0,C K R− ≠ 1

0B-  exists and thus Eq. (4) is equivalent to 

2 .? u 0                                                                 (6) 
The general solution to Eq. (6) is 

( ) ( ),z zu f f= +       1 2i ,z x x= +                                           (7) 

where ( )zf  is an unknown complex vector; and ( )zf  stands for the conjugate of ( )zf . 

To introduction Stroh-type formalism for anti-plane deformation, we take a generalized stress 
function vector∑ , such that [21,22] 

[ ]31 31 ,2, THs = - å [ ]32 32 ,1, THs = å                                            (8) 
Inserting Eq. (3) into Eq. (8) results in  

,2 0 0
1 1x x

抖- = +
抖

f fB Bå
                                                    (9) 

,1 0 0
2 2x x

抖= +
抖

f fB Bå
                                                    (10) 

Eq. (9) or Eq. (10) gives 

( ) ( )0 0i i fz z= -B f Bå                                                     (11) 
Eqs. (7) and (11) can be rewritten as 

( ) ( ),z z= +u Af Af                                                       (12) 

( ) ( ),z z+= Bf Bfå                                                       (13) 
where  
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,=A I    i= 0B B                                                        (14) 

where I  is a 2×2 unit matrix. 
Eqs. (12) and (13) are the general solutions of anti-plane deformations. It is seen that the stresses 

and stains of the phonon field and the phason field can be obtained from Eqs. (7) and (8) if the 
complex potential vector ( )zf  is available. 
 
3. Stress fields and stress intensity factors 
 

We consider a lip-shape crack in a 1D hexagonal quasicrystal solid infinitely large. It is 

assumed that the quasi-periodic direction of 1D hexagonal QCs is along the positive direction of 3x  

axis. The solid is subjected to uniform remote anti-plane shear loadings of the phonon field and the 
phason field, as shown in Fig. 1 2a  is the crack length and 2h  is the crack height. For the current 
case, we will study the complex potentials and the stress intensity factors under anti-plane shear 
loadings of the phonon field and the phason field at infinity. In this case, the complex function 

( )zf  has the following form [21] 

( ) ( )0 ,z z z¥= +f c f                                                      (15) 

c∞  is a complex constant related to the remote loading conditions, and ( )0 zf  is an unknown 

complex function vector, which vanishes at infinity, i.e., ( )0 0?f . 

Differentiating Eqs. (12) and (13) with respect to 1x , we have 

( ) ( ),1 ,z z= +u AF AF                                                     (16) 

( ) ( ),1 ,z z= +BF BF∑                                                    (17) 

where ( ) ( )z d z dz=F f . Substituting Eq. (15) into Eqs. (16) and (17), and then taking ∞→z , 

results in 

,1 ,∞ ∞ ∞= +u Ac Ac                                                        (18) 

,1 ,∞ ∞ ∞= +Bc Bc∑                                                        (19) 

,1 32 32, ,
T

Hσ∞ ∞ ∞⎡ ⎤= ⎣ ⎦∑      ,1 31 32, .
T

wε∞ ∞ ∞⎡ ⎤= ⎣ ⎦u                                     (20) 

The boundary along the surfaces of cracks is 

( ) ( ) ,s
s

z z t ds+ = ∫Bf Bf     [ ]3 3, ,Tst t h=                                    (21) 
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where 3t  and 3h  represent the anti-plane shear traction of the phonon field and the phason field 

along the boundaries of cracks. In the current case, the surfaces of the cracks are free of external 
loadings, thus, Eq. (21) becomes 

( ) ( ) 0.z z+ =Bf Bf                                                       (22) 

Inserting Eq. (15) into Eq. (22) gives 

( ) ( ) ( )0 0 .z z z z∞ ∞+ = − +Bf Bf Bc Bc                                         (23) 

In order to obtain the complex function ( )0 zf  from Eq. (23), we introduce the following 

mapping function [23] 

( ) ( )2 2

1i ,
2 1
az m

m
ζω ζ ρ ζ

ζ ρ ζ

⎡ ⎤
⎢ ⎥= = + −

+⎢ ⎥⎣ ⎦
                                   (24) 

in which 

,
1

1
m−
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2

2

2

1
11

1
1

2
1

⎥
⎦

⎤
⎢
⎣

⎡

+
−

−
−
+

==
m
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m
m

a
hβ                                 (25) 

1<β ,the approximate representations are 

,
42

1
2ββρ ++≈    

82

2ββ
−≈m                                           (26) 

It can be shown that Eq. (24) maps the exterior region of a lip-shape crack in the z plane into the 
interior of a unit circle in theζ  plane, and the boundary of the lip-shape crack is transformed the 

unit circleτ , where we take ( )1 i,aω− → −  ( )1 iaω− − → , as shown in Fig. 2. 

 
 

Figure 2. Mapping function of lip-shape crack into a unit circle. 
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Inserting Eq. (24) into Eq. (22),and then taking σζ = , results in 

( ) ( ) ( ) ( )0 0 ,σ σ ω σ ω σ∞ ∞⎡ ⎤+ = − +⎣ ⎦Bf Bf Bc Bc                                 (27) 

where σ  is the point on the unit circle, and ( ) ( )( )0 0σ ω σ=f f  is defined. 

Multiplying Eq. (27) by ( )2 idσ π σ ζ−⎡ ⎤⎣ ⎦ , where ζ  is an arbitrary point inside the unit circle, 

and performing the Cauchy integral along the unit circle τ  in the anticlockwise direction, we have 

( ) ( ) ( )
0

1 1
2 i 2 i

d d
τ

ω σ ω σ
ζ σ σ

π σ ζ π σ ζ
∞ ∞= − −

− −∫ ∫Bf Bc Bc                             (28) 

( )ω ζ is analytic inside the unit circle, except for a simple pole at 0=ζ . Since ( )ω ζ is analytic 

inside the unit circle, except for the simple poles at 0=ζ , imζ = , imζ = − . By the residue 

theorem in complex variable function, one has 

( ) ( )1 1i ,
2 i 2

ad
ω σ

σ ω ζ ρ
π σ ζ ζ

= −
−∫                                             (29) 

( ) ( ) ( )2

1 1i i .
2 i 2 2

a ad m
mτ

ω σ ζσ ω ζ ρ
π σ ζ ζ ρ ζ

= + −
− +∫                               (30) 

The following result can be obtained by Eq.(18),Eq.(19),Eq.(20) 

{ }32 32 31 31
1 , i , ,
2

T T
H Hσ σ∞ ∞ ∞ ∞ ∞⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦Bc                                          (31) 

{ }32 32 31 31
1 , - i , ,
2

T T
H Hσ σ∞ ∞ ∞ ∞ ∞⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦Bc                                          (32) 

Substituting Eqs. (31) and (32) into Eq. (28), then differentiating the obtained results with respect 
to ζ  leads to 

( )
( ) ( )

2 2
31 32

0 2 22 2 2 2
31 32

1 11 1
4 41 1

a m a mm m
H Hm m

σ σρ ζ ρ ζζ
ρ ζ ρ ζ

∞ ∞

∞ ∞

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤− −⎢ ⎥ ⎢ ⎥= + − − − −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥+ +⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦
BF        (33) 

( ) ( )0 0 /d dζ ζ ζ=F f . 

( )ζω′  and ( )ω ζ
′

⎡ ⎤
⎣ ⎦ can be given by Eq. (24) as follows 

( )
( )

2

22 2 2

1 1i ,
2 1

a mm
m

ζω ζ ρ
ζ ρ ζ

⎡ ⎤−⎢ ⎥′ = − −
⎢ ⎥+⎣ ⎦

                                    (34) 
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( )
( )

2

22 2 2
i 1 ,

2
a m m

m

ζω ζ ρ
ζ ρ ζ

⎡ ⎤′ −⎢ ⎥⎡ ⎤ = − − −⎣ ⎦ ⎢ ⎥+⎣ ⎦
                                  (35) 

It is found from Eq. (33) that the stress fields can be obtained from the relations between the stress 
and stress function. 

The stress intensity factor at the crack tip is a very important physical quantity in fracture 
mechanics, which can reflect the stress intensity around the crack tip. The vector of the stress 
intensity factors can be defined as 

( )
1

1 ,1, lim 2 ,
Th

III III z z
K K z zπ⊥

→
⎡ ⎤= = − ∑⎣ ⎦k                                     (36) 

where h
IIIK  and ⊥

IIIK  denote the stress intensity factors of the phonon field and the phason field, 

respectively. 
Substituting Eq. (17) into Eq. (36) gives 

( ) ( )
1

1 0, 2 lim 2
Th

III III z z
K K z z zπ⊥

→
⎡ ⎤= = −⎣ ⎦ BFk                                  (37) 

in which the condition that ( )0 zBF  is imaginary along the 2x axis is used. 

In the ζ  plane, Eq. (37) becomes 

( ) ( ) ( )
( )

0

i
2 2 lim i ,

ζ

ζ
π ω ζ ω

ω ζ→−
= − −

′
BF

k                                     (38) 

where iζ = −  is the corresponding point of the crack tip az = . 

It is obvious from Eqs. (33) and (34) that one finds ( )
i

lim
ζ

ω ζ
→−

′  exists and ( )0i
lim 0
ζ

ζ
→−

≠BF . 

Thus, by the L’Hospital rule, Eq.(38) results in 

( )
( )

0

i
2 2 lim ,

ζ

ζ
π

ω ζ→−
=

′′

BF
k                                                  (39) 

( )ω ζ′′  can be obtained by Eq.(34) 

( )
2 3

33 2 2

2 2 6( ) i ,
2 1

a m m

m

ζ ζω ζ ρ
ζ ρ ζ

⎡ ⎤−⎢ ⎥′′ = −
⎢ ⎥+⎣ ⎦

                                        (40) 

Inserting Eqs. (33) and (40) into Eq. (39), the analytic expressions of the stress intensity factors at 

the crack tip ( ),0,0a  for the anti-plane shear problem are derived as follows 

32

32

,aK
H

σ
π

∞

∞

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

k                                                       (41) 

where  
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 .
31 2ρρ

ρ
mm

K
++

=                                                   (42) 

If the crack height h  tends to zero, one has ,0=m 1=ρ  and then Eq. (41) reduces to 

2 1.
1 3

K
m m
ρ
ρ ρ

= =
+ +

                                                (43) 

which is the solution of Griffith cracks in a 1D hexagonal QC [15].  
 
4. Numerical examples 
 
    We consider the variation of K  with 

h
a

β = . It can be shown from Fig. 3 that if 1β < , the 

dimensionless field intensity factor K  decreases with the value of β  becomes large. It indicates 
that an increase of the height of the tip-shape crack will retard the crack propagation. In particular, 
when the height of the lip-shape crack approaches to zero, the current case can be reduced to the 
Griffith crack, i.e., 1K = , which is easier to propagate. 

 
 

                        Figure 3. Variation of K with 
h
a

β =  
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