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Abstract  The paper presents a theoretical treatment of the dynamic behavior of fibre reinforced composites 

containing matrix cracks and reinforcing inhomogeneities. A pseudo-incident wave method is used to treat 

the dynamic interaction between cracks and inhomogeneities. Using this method, the original interaction 

problem is reduced to the solution of coupled single crack/inhomogeneity subproblems, for which analytical 

solutions could be derived. The interaction effects are introduced via the superposition of the different 

subproblems. The steady state solution of the interacting crack problem is obtained using integral transform 

method and the solution of the inhomogeneity problem is determined using Fourier expansion. The dynamic 

stress intensity factors (SIFs) at the matrix crack are obtained and numerical examples are provided to show 

the effect of the frequency, geometry of microdefects and material properties upon the dynamic SIFs.  
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1. Introduction 
 

A major issue in modeling the micromechanical behaviour of advanced composites is how to deal 

with the interaction between cracks and inhomogeneities, which governs the overall failure 

mechanism of the materials [1-4]. The quasi-static interaction problem in composite materials has 

received considerable attention but the dynamic interaction between cracks and inhomogeneities is 

still limited [5-9]. Compared with quasistatic problems, the formulation of dynamic problems is 

much more complicated and difficult to deal with and the experimental data are difficult to obtain. It 

should be mentioned that most advanced composite materials are currently being used or considered 

for use in situations involving dynamic loading. Numerical methods, such as finite element analysis 

or boundary element method, can be used for this type of dynamic analyses under certain conditions 

but has their own limitations when multiple defects are involved. Analytical study of interacting 

cracks under dynamic loads is still attracting researchers [10-12] because of its high reliability and 

accuracy in simulating the dynamic response of multiple defects in composite materials.   

 

It is the objective of the present paper to review and present the usage of the pseudo-incident wave 

method for the analysis of steady state dynamic interaction problems. Based on this method, the 

original interaction problem is reduced into single crack and single inhomogeneity subproblems, 

which are coupled through the scattered waves. The single crack and single inhomogeneity 

problems are solved analytically using integral transform method and Fourier expansion, 

respectively. Following this introduction, the paper is divided into three more sections: the 

formulations, results and discussions and conclusions. 

 

2. Formulation of the Problem 
 

Consider now the dynamic interaction between arbitrary defects, which could be in forms of cracks 

or inhomogeneities, in an infinite elastic isotropic solid under steady state dynamic antiplane 

loading, as shown in Fig.1. The displacement field corresponding to a steady state dynamic loading 

can be generally expressed in terms of the frequency ω as 

                                                                            (1) 
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For the sake of convenience, the time factor  will be suppressed and only the magnitude w(x,y) 

will be considered. The harmonic displacement field must satisfy the Helmholtz equation [13], 

 

                                                    (2) 

 

where cT=(µ/ρ)
1/2

 is the shear wave speed of the medium. The non-vanishing shear stress 

components are  

                                                                      (3)        

  

where µ is the shear modulus of the material.  

 
Figure 1. Interacting defects subjected to an incident wave 

 

Instead of solving the original interaction problem, single defect problems will be considered. For 

any individual defect the interaction with other ones will be treated as an unknown wave, 

pseudo-incident wave. This wave represents the scattered waves from all other defects and will be 

determined by considering the consistency condition between defects. 

 

2.1 Single crack problem 

  

Consider the single defect problem first. For a single crack subjected to a dynamic antiplane loading, 

the boundary conditions along the crack surfaces are, 

 

                                                                             (4) 

 

with τ1 being the shear stress caused by the incident wave. x is the axis along the crack surface and 

c is the half length of the crack. 

 

By making use of Fourier transform, the general solution of the displacement and stress fields in the 

transformation domain can be expressed as 

 

          (5) 

 

where y is an axis starts from the centre of the crack and is perpendicular to the crack surfaces, s is 

the Fourier transform parameter of x, f(x) represents the deformation of the crack surfaces, defined 

by   

                                                                                                              

                                                                             (6) 

and  

 

 

 

The solution of the problem can be obtained by using Chebyshev polynomial expansion of f(x) as, 

 

                                                                           (7) 
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where Tj are Chebyshev polynomials of the first kind and cj are unknown constants. By satisfying 

the boundary condition at selected collocation points along the crack surfaces, the parameters cj can 

be determined in terms of the boundary stress as, 

 

                              (8) 

 

where [S] is a known matrix, {A}={c1, c2, … }
T
 and {f} is a matrix containing the boundary stresses 

at the collocation points along the crack surfaces. From this solution, the stress and displacement 

field caused by this crack can be calculated in terms of {A}. 

 

2.2 Interaction problem 
 

The solution of other single defect problems can also be determined and the solution can be 

expressed in the similar format as shown in Eq. (8). When multiple defects are involved, for defect 

Aj, as shown in Fig.2(a), all scattered waves from other defects will become an incident wave, i.e. 

the pseudo-incidenr wave (uj
p
). Therefore, defect Aj is subjected to both the original incident wave 

and the pseudo-incident wave and results in a scattered wave, as shown by Fig.2(b). 

                               
   (a)                                 (b) 

 

Figure 2 Illustration of pseudo-incident waves 

(a) scattering from other defects, (b) total incident wave for a defect 

 

Based on the relation between defects discussed above, for defect Aj the solution can be expressed 

as 

                      (9) 

where [Sj] is the matrix given by (8) for Aj, and the two terms on the right hand side represent the 

original incident wave and the pseudo-incident wave. 

  

If Eq. (9) is applied to all the defects and the pseudo-incident waves are represented in terms of the 

scattered waves, the governing equation for the interaction problem can be determined, 

 

                  (10) 

 

where [Qj] are determined by the scattered waves of the defects, {fj} are the original incident wave 

at different defects. It should be mentioned that both [S] and [Q] matrices are obtained from the 

analytical solution of single defects. By solving this linear equation, the solution of the interaction 

problem can be determined. 
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3. Results and Discussion 
 

The solution presented in the previous section can provide reliable and accurate prediction of the 

stress field caused by the dynamic interaction. The method can be used to treat interaction between 

different defects [8,10,11]. Although only the single crack solution is presented in the previous 

section, solutions of other single defects can be similarly and easily assembled into Eq. (10). In this 

section, typical examples are presented to illustrate the dynamic interaction between different 

defects. The numerical simulation is conducted by solving Eq. (10) and the convergence of the 

solution has been carefully evaluated. Specifically, numerical results are presented to illustrate the 

dynamic interaction between a main crack and a second crack or an inhomogeneity. The incident 

antiplane wave is perpendicular to the crack surface. 

 

To evaluate the accuracy of the current method, Fig. 3 shows the static interaction between a 

circular inhomogeneity and a collinear crack subjected to an initial stress intensity factor (K0). 

Comparing with the closed form solution (lines) [14] excellent agreement is observed. 

 

 
      Figure 3. Static interaction                  Figure 4. Interacting cracks 

 

Fig.4 shows the effect of a collinear crack of length 2a on the normalized stress intensity factor 

crack of a main crack of length 2c. a/c=0 corresponds to the case of a single crack. Comparing 

these curves indicates that significant interaction between cracks exists for low frequencies. But the 

interaction effect is significantly reduced at higher frequencies. 

 

Fig.5 shows the result of interaction between a crack and an inhomogeneity. The variation of the 

normalized stress intensity factor for different crack-inhomogeneity configurations is presented. 

Unlike the collinear crack case where only amplification effects are observed, when the 

inhomogeneity, with a higher stiffness, is ahead of crack, the stress field is shielded. i.e. the 

dynamic stress intensity factor at the main crack attains a value lower than the dynamic single crack 

solution. Fig.6 presents the result of a similar inhomogeneity with a partially debonded interface 

near the crack tip, as shown. With the increase of the size of the debonded interface, the stress 

intensity factor at the crack tip increases and indicates an amplification effect. For high loading 

frequencies, the interaction effect becomes insignificant because the distance between the crack and 

the inhomogeneity is much larger than the wave length.  
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  Figure 5. Crack and inhomogeneity         Figure 6. Crack and debonded inhomogenity 

 

 

4. Conclusions 
 
A pseudo-incident wave method is developed to predict the dynamic interaction effects between cracks and 

inhomogeneities. This approach enabled us to reduce the original interaction problem into the solution of 

coupled single crack/inhomogeneity subproblems, for which analytical solutions could be easily obtained 
which are coupled through the scattered waves. The steady state solution of the crack problem is 

obtained using integral transform method and the solution of the inhomogeneity problem is determined using 

Fourier expansion. The dynamic stress intensity factors (SIFs) at the matrix crack are obtained and numerical 

examples are provided to show the effect of the frequency, geometry of microdefects and material properties 

upon the dynamic SIFs. Both shielding and amplification effects are experienced and discussed. 
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