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Abstract This paper develops a super element that simulates the elastic behavior around an inclusion corner. 
The super inclusion corner element is finally incorporated with standard four-node hybrid-stress elements to 
constitute an ad hoc hybrid-stress finite element method for thermo-elastic stress analysis of an irregular 
inclusion in isotropic materials under thermal and mechanical loadings. In the numerical analysis, 
generalized stress intensity factors at the inclusion corner are systematically calculated for various material 
stiffness ratio and dimensions of the inclusion in a plate subjected to thermo-mechanical loadings. 
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1. Introduction 
 

 Much attention has been paid to inclusion problems by many researchers since Eshelby’s first 
solution to the ellipsoidal inclusion problems. The application background is found in 
microstructures, composite material structures and others. 

As the stress intensity at an inclusion corner is governed by the corner surrounding material 
properties, the corner geometry conditions and loading situations, great mathematical difficulties are 
usually encountered in analytical solutions. Therefore, most complicated engineering problems of 
inclusions have to resort to numerical methods such as the finite element method (FEM) and others. 
Chen [1] used the body force method to calculate stress intensity factors (SIFs). The SIFs for a 
dissimilar material wedge under mechanical and thermal loads were determined by using the least 
square method [2-4]. Path-independent conservative line integrals derived from Betti’s reciprocal 
principle were utilized to evaluate stress intensities at the interface [5-7]. The solutions from the 
aforementioned methods are strongly dependent on the number of element meshes. Furthermore, it 
is very difficult to obtain accurate numerical results for singular stress states near the apex in 
dissimilar materials using the conventional finite element method, even with the help of many finite 
elements.  

To improve the accuracy of numerical results for wedge or interface problems in the traditional 
finite element analysis, the analytical asymptotic solutions near the apex can be used as 
interpolation functions to construct a stiffness matrix for special elements containing a part or 
interface of a wedge. Chen [8] developed an enriched element with appropriate interpolation 
functions to account for the singular behavior at the junction of dissimilar materials subjected to 
mechanical load. Similar to Chen [8]’s work, enriched finite elements were further developed by 
Gadi et al. [9] and Pageau and Biggers [10]. However, numerical results with enriched finite 
elements are still dependent on the special element size, and the convergence of the results is not 
guaranteed. Therefore, more accurate numerical results require a lot of refined element meshes 
between the special element and standard elements. For a crack that either follows or is 
perpendicular to the interface, Tong et al. [11] constructed a special super element for the analysis 
of plane crack problems. Similarly, Tan and Meguid [12] developed a singular inclusion corner 
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element for dissimilar material wedge problems. Mote [13], Bradford et al. [14] and Madenci et al. 
[15] established a special global element based on asymptotical solutions around a dissimilar 
material junction edge. By using the eigenfunction expansion method, Barut et al. [16] derived a 
special hybrid global element on the basis of exact analytical solutions of stress displacement fields 
under mechanical and thermal loads. In addition to the leading singular order term, a few other 
higher order terms were also used in constructing the special elements in Ref. [11-13, 16], which 
leads to more accurate numerical results 

The hybrid-stress finite element method developed more than 40 years ago by Pian is now well 
recognized as a powerful and easy-to-use tool for solving a variety of two-dimensional linear 
elasticity problems containing a single or multiple singular points. To the best of the author’s 
knowledge, the studies related to singular thermo-mechanical fields of inclusions by the 
hybrid-stress finite element method are absent. Moreover, a numerical solution of even a single 
irregular inclusion by the method could not be found in the literature, either. To predict singular 
stress fields around an inclusion corner under thermo-mechanical loads, a new ad hoc super 
inclusion corner element based on the numerical asymptotic solutions developed is proposed in this 
paper to study inclusion problems shown in Fig. 1. The validity and applicability of present 
approach are established through available solutions 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. The hybrid variational functionals for thermo-elasticity involving an inclusion 
 

Let a super n-sided polygonal element centered at the inclusion corner is taken as the 
complementary region (C-region) which contains inclusion domain 2Ω with outer boundary 2Γ and 
its surrounding matrix domain 1Ω with outer boundary 1Γ , as shown in Fig.2. 

Under appropriate continuity conditions, the stiffness matrix for a super inclusion element of 
dissimilar material wedge subjected to thermo-mechanical loads is written as [16]: 
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Figure 1 Local coordinate system near the  
inclusion corner-tip 

Figure 2 A super n-sided polygonal inclusion corner 
element 
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in which ( )( )m k
λ g  represent the unknown stress and displacement fields due to the mechanical load 

and ( )t k
cλ + u  are the known initial displacement components from the uniform temperature 

variation TΔ . The left subscripts cλ +  represent the summation of singular and non-singular 

components of the variables. 0Π  represents the total potential, given as an initial value, associated 

with the displacements and stresses under thermal load. Matrix n  contains 3 2×  components of 
the unit outward normal to boundary kΓ . ( )ku are displacements under thermo-mechanical loads. 

Introducing the coordinate system transformation matrices ( ) ( )= gg gZ and =u Uβ , σ Pβ= , 

( )
s

k =%u Lq , where matrix L  is the linear interpolation function, and vector sq  is the nodal 

displacement on the boundary segment kΓ of the super corner element, then we have 
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Setting 0δΠ =  and noting that 0 0δΠ = , we determine that: 

{ }1
s

m t−= −β H Rq f  (3) 

and thus 
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From Eq.(4), we have the following matrices:  

1T
s

−=K G H G , 1t T t−=F G H f  (5) 

where sK  is the stiffness matrix of the super corner element and tF  represents the nodal force 

due to thermal load on the boundary segment kΓ . This ad hoc element is used to model the 

near-field region and is combined with the conventional standard four-node hybrid-stress elements 

in the far-field region. 
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3. Definition of the stress intensity factor (SIF) 
 

The singular stress field around the inclusion corner apex under thermo-mechanical loads can 
usually be expressed in a form of singular terms as: 

t
c

1
( )n

N M
n

n
n

K r fλ
θθ θθ θθσ θ σ

+

=

= +∑  (6)  

t
c

1
( )n

N M
n

r n r r
n

K r fλ
θ θ θσ θ σ

+

=

= +∑  (7) 

where ( , )r θ  is a local polar coordinate system centered at the inclusion corner apex, and the axis 
of 0θ =  is the bisector of the two wedge apexes shown in Fig.1; N represents the total number of 

complex singularity orders nλ  between -1 and 0, and M is the number of real singularity orders 

nλ ; ( )nfθθ θ and ( )n
rf θ θ  are the notch angular variation of normal stress fields and shear angular 

variations associated with nλ , respectively; t
c θθσ   and t

c rθσ   are regular stresses caused by a 

thermal load. 

According to Chen’s work [17], the singularity orders nλ  have only two roots, i.e., 1λ  and 2λ ; 

When Dundur’s composite parameters α  and β  [18] meet the condition ( ) 0β α β− > , 1λ  and 

2λ  are always real within the range of 1 21 Re( , ) 0λ λ− < < . On the moment, expressions (6) and (7) 

can be rewritten as: 
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Defining 1 ( )fθθ θ  and 2 ( )rf θ θ  in such a way that 1
0( ) 1fθθ θ = and 2

0( ) 1rf θ θ = , where 0θ  can be 

chosen arbitrarily, then we have 
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Once the values of 1K  and 2K  are obtained, the singular stress fields at every θ  can be 

solved from Eqs.(8) and (9). 
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4. Numerical results and discussions 
 

The present method is used to analyze the singular stresses around the corner apex A of a 
rectangular inclusion subjected to uniform temperature change TΔ  as shown in Fig.Fig.3. Fig.4 
shows a configuration for a super 8-node quadrilateral inclusion corner element. For the solution of 
the singular stress fields, around the square inclusion corner apex A, defined in Eqs.(8) and(9), the 
stress intensity factors 1K  and 2K  should be first determined. Generally speaking, any 
component of the stresses at any angle θ  may be used as the compared object to determine the 
stress intensity factors. However, for simplicity, herein we only use the stresses at o0θ =  and 

o180θ = , that is, the stresses at points on the bisector of the vertex angle in region 2Ω (for o0θ = ) 
and 1Ω (for o180θ = ). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
   An example for a square inclusion ( l h= ) is given herein. In the numerical analysis, To model 
the infinite plate, its width and height are all set to be10l ; a quarter of plate is used for element 
divisions due to the symmetry of its geometry and loading, and 332 4-noded stress-based element 
and one 8-noded super elements are utilized. The material parameters of elastic 
modulus 1 2: 100E E =  and Poisson ratio 1 2 0.3ν ν= =  are employed. The singular stresses away 
from the apex A along the boundaries of the inclusion are analyzed with different the unknown 
parameters sβ . They are plotted in Fig. 5. In the Figures, for the sake of comparison, the numerical 
results from the commercial software ANSYS package are also shown. It is shown that the singular 
stresses θθσ  and rθσ  rapidly increase with the decrease of the distance away from the inclusion 
corner apex A along the boundary ( o135θ = − ) of the square inclusion, which is well recognized; 
When the number of sβ  meets the LBB condition: greater than equal to the number of freedom 
degrees of nodes in the super element minus the rigid modes (=3 in plane deformation), the present 
numerical results are in good agreement with the solutions of the ANSYS. Fig.6 tells us a fact that 
the influence of thermal expansion coefficient 2α on the dimensionless stress factor 1F  is limited 
to very small the range of 6

2 20 10α −< × . Figs.7 and 8 give the relationships between the 
dimensionless stress factor 1F  and material parameters. From Fig.7, it can be seen that 1F  
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Fig.4 Configuration of a super 8-node  
quadrilateral inclusion corner element 

Fig.3 A rectangular inclusion in a infinite  
matrix under thermal loading 
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decreases more and more rapidly with increasing Poisson ratio 2ν . However, it is shown in Fig.8 
that the influence of modulus ratio out of range of 1 210 / 10E E− < <  on the dimensionless stress 
factor 1F  is so small that it can be neglected. In Figs.6-8, the dimensionless expression of 1F  is 
defined as 

1

1
1

2 2

KF
E T l λα π −

=
Δ

      (9) 

 
5. Concluding remarks 
 

A new finite element method was developed to analyze irregular-shaped inclusion problems 
under thermo-mechanical loads. The method consists of a super polygonal inclusion corner element 
in conjunction with standard four-node hybrid-stress elements. A benchmark example of a square 
inclusion problem was discussed. The present results is validated by comparison with the numerical 
results obtained using the conventional finite element commercial software ANSYS package. The 
present numerical solutions show that our method provides satisfactory results with coarse meshes 
and is effective and applicable to thermo-mechanical problems with multiple singular points. In 
addition, for square inclusion problems, the following useful conclusions are drawn: 
(1) The dimensionless stress intensity factor  1F  decreases more and more rapidly with increasing 

Poisson ratio 2ν ; 
(2) The influence of modulus ratio out of range of 1 210 / 10E E− < <  on the dimensionless stress 

factor 1F  is so small that it can be neglected. 
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