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Abstract  A model of dynamic tensile fracture is constructed, which is applicable for many metals 
in wide range of strain rate. It considers a stage of thermofluctuation nucleation of voids and stages 
of voids growth and aggregation. The model contains two fitted parameter for each substance: the 
first parameter is a specific free energy of metal surface; the second one is a distribution parameter 
for weakened zones of material. These parameters are found for copper, aluminum, iron, titanium, 
nickel and molybdenum by fitting with the experimental data and molecular-dynamics simulations. 
Calculations show that there are two regions with different slope in the strain rate dependence of 
strength: in the first one (at strain rate < 108 s–1) voids are nucleated in weakened zones, and 
strength grows up relatively fast with strain rate; in the second one (at strain rate > 108 s–1) number 
of weakened zones becomes insufficient, voids are nucleated predominantly in perfect material, and 
the strength growth is decelerated. Plasticity is not effect on voids nucleation and on the material 
strength at the strain rate > 107 s–1, but it becomes a dominant factor at the strain rate < 104 s–1. 
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1. Introduction 
 
Dynamical tensile strength is an important property of materials. A number of experimental works 
is devoted to its determination: a plate impact [1,2], a short-pulse laser irradiation [3-5] and a 
powerful ion irradiation [1] can be used to produce conditions of metal rupture. Very high strain 
rates (above 109 s–1) are available now in experiments on irradiation of thin foils by short laser 
pulses [3,5]. Molecular dynamics (MD) is also a useful method for the investigation of fracture at 
ultra-high strain rates [6-10]. The dynamical strength value substantially depends on the strain rate. 
Experiments and MD simulations can not cover all possible ranges of this parameter. Therefore, 
their data have to be supplemented by some approximation for using in simulations of dynamical 
processes in materials. For example, the strain rate dependence of the dynamic strength is 
commonly approximated by a simple power law [3,10]).  
 
Various physical models of fracture typically separate the stages of the voids nucleation and of the 
voids growth [11]. Nucleation of voids is strongly effected by the presence of inclusions, grain 
boundaries and other defects of the crystal structure [12]. 
 
A modification of the model [13] is presented here, which considers weakened zones of material 
with reduced threshold of the micro-voids generation. It allows describing the strain rate 
dependence of strength in the range of strain rates from 103 s–1 up to 1011 s–1. Kinetics of the 
dynamic fracture of metals is numerically investigated basing on the proposed model. 
 
2. Model of fracture 
 
The model uses two-level approach for fracture description. Micro-level of modeling deals with 
individual micro-cracks in crystalline material and describes their thermo-fluctuation nucleation, 
growth and aggregation. Macro-level deals with averaged values through a length scale much large 
the distance between the cracks. Micro-cracks growth is described with use of simplified dynamics 



13th International Conference on Fracture 
June 16–21, 2013, Beijing, China 

-2- 
 

equation for its radius. Macro-level is described by continuum mechanics equations with additional 
terms, which takes the micro-cracks ensemble into account. 
 
2.1. Voids growth equation 
 
Let β

r
 to be a unit vector directed along the maximal tensile stress. Tensile stress ik i kβσ σ β β=  

can initiate formation and growth of the opening mode cracks perpendicular to β
r

 (see Fig. 1). Let 
us consider such a micro-crack, which is supposed to be isolated and axially-symmetrical. Radius of 
crack is R and its half-thickness is h; its volume fV  can be estimated as a volume of cylinder 

2
f 2V R hπ= ⋅ . Opening of crack creates non-uniform field of displacements in its vicinity. Created 

by a localized disturbance, the displacements have to decay with distance with on the scale R . 
Maximal displacements in β

r
 direction corresponds to the crack faces, and it is h+  and h−  for 

opposite faces. Therefore, the ratio /h R  can be used as an estimation of the strain value in the 
crack vicinity. Corresponding stress can be estimated as ( )/G h R . In the loaded medium this 
internal stress is superposed on the external macroscopic tensile stress βσ . And the total stress has 
zero normal components on the crack faces to maintain the constant form at the fixed radius R . 
Hence, we obtain an estimation /h R Gβσ=  for the crack half-thickness; than the crack volume is 

3
f 2 /V R Gβπ σ= . Usage of the last two formulas assumes that the crack thickness instantly adapts 

to variations of R  or βσ  (a quasi-static approximation), it is valid when the typical time of 

variations τ  ( /R Rτ ≈ & or 1/τ ε≈ &, where ε& is the strain rate) is much longer than the transient 
period / tR c . Therefore, conditions for the quasi-static approximation are the next: tR c<<&  and 

/tc Rε <<& ; these inequalities usually take place. 
 

 
Figure 1. A separate micro-crack; the real crack shape is approximated by cylinder. 

 
The crack grows due to separation of atoms along the plane of crack. The growth rate is restricted 
by inertia of the surrounding material. It is possible to formulate a Lagrange equation [14] for the 
micro-crack growth, using the radius R as a generalized coordinate. In this approach system is 
characterized by the Lagrange function S VL K U U= − − , where K  is the kinetic energy of the 
substance movement due to the growth of micro-crack; SU  is the surface energy of the crack faces; 

VU  is the potential energy of crack in the field of external stresses βσ , and by the dissipative 
function F , which is equal to the one half of the mechanical energy decrease rate due to plastic 
deformation in the micro-crack vicinity. Expression 2

fK V Rρ= &  is used as an estimation of the 



13th International Conference on Fracture 
June 16–21, 2013, Beijing, China 

-3- 
 

kinetic energy, where ρ  is the density of substance. Work of the external stresses βσ  at the crack 
opening is equal to the work on the crack faces; its work on the bulk is zero because of symmetry. 
One can integrate the elementary work along faces and obtain the value fVβσ δ⋅ , where fVδ  is an 
increment of the crack volume. Therefore, the potential energy of crack in the external stress field 

βσ  can be written as 3 2
f 2 /VU V R Gβ βσ π σ= − = − ; negative sign here indicates that the 

micro-crack growth is energy-wise efficient in the tensile stress. Potential surface energy connected 
with two crack faces is equal to 22SU Rπ γ= . 
 
Estimation of the dissipative function is more complex. The crack size changing is accompanied by 
generation of non-uniform fields of deformations and stresses in the crack vicinity, and the shear part of 
these stresses undergoes plastic relaxation. Due to the plastic strain the mechanical energy of the 
growing or collapsing crack is conversed in heat. On the base of the Orowan equation for dislocation 
plasticity, one can write the maximal plastic strain rate D tw b cρ=& , where Dρ  is the scalar density of 
dislocations in the substance, b  is the modulus of the Burgers vector of dislocations, tc  is the 
limiting speed of the dislocations movement. Using the ratio / /h R Gβσ=  as a characteristic 
value of deformation in the crack vicinity, we obtain a characteristic time of the plastic relaxation 

( ) ( )/ / /D D th R w G b cβτ σ ρ= =& . This is a time interval sufficiently large for the plastic relaxation 
of excess shear stress in the crack vicinity if the form of crack is artificially frozen. Then the 
mechanical energy decrease rate can be estimated as / DK τ  (external stresses and, respectively, 

VU  are supposed to be fixed). Than the dissipative function is equal to 

( ) ( ) ( )231/ 2 / D D tF K b c R Rτ πρ ρ= = & . 
 
Substituting all obtained elements in the Lagrange equation, one can obtain the next equation for the 
crack radius: 
 

 ( ) ( )
2

22 3 4 ' 6
2

R R R R R
G G
β βσ σ

ρ γ γ⎛ ⎞+ = − + +⎜ ⎟
⎝ ⎠

&& & , (1) 

where ( )( ) 2' / 2 D tb c R Rγ ρ ρ= & is irreversible energy (per unit area of crack faces) spending on 
plastic deformations; this energy dissipates both at the growth and at the collapse of the crack. It 
follows from the Eq. (1), that the crack grows when its radius exceeds a critical value 

( ) ( )2
cr 2 / 3R G βσ γ γ− ′= + . Calculations show, that at high-rate deformation the value of γ ′  is 

negligible with respect to γ  for just formed cracks with critical radius. Therefore, initial crack 
growth occurs in a brittle mode, practically without energy dissipation on the plastic deformations. 
In particular, the next relation is valid with good accuracy ( ) 2

cr 2 / 3R G βγ σ −= . But at the 
micro-crack growth, the irreversible energy γ ′  increases and it can reach the value of the order of 

21000 J / cm:  for large cracks, which exceeds the value of γ  on the three orders of magnitude. 
 
2.2. Nucleation of cracks. Weakened zones of the material 
 
Let us consider a micro-cracks ensemble. We denote the number of micro-cracks in unit volume of 
substance as n . To find the micro-cracks production rate we assume, that all they are generated due 
to thermal fluctuations. We assume that main contribution in /dn dt  is provided by cracks with 
critical radius crR , because cracks with crR R<  are being healed, and generation of cracks with 
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crR R>  is the low-probability process. Formation work for critical crack is 

( ) ( )cr cr crV SA U R U R= +  (it is reversible process without plastic dissipation), and we obtain 

( ) 2
cr cr2 / 3A Rπ γ= ⋅ ⋅ . The probability of such fluctuations is ( )( )crexp / BP A k T= −  [16], where T  is 

the substance temperature, Bk  is the Boltzmann constant. 
 
Concentration of the fluctuating centers can be estimated as ( )3

g cr1/ 8n R= . Fluctuation frequency f  
can be estimated as the frequency of transverse phonon with wavelength equal to the critical crack 
diameter ( )cr/ 2tf c R= . As a result, the cracks nucleation rate is 

 
2
cr

g 4
cr

2exp
16 3

t

B

c Rdn P n f
dt R k T

π γ⎛ ⎞⋅ ⋅
= ⋅ ⋅ = −⎜ ⎟

⎝ ⎠
. (2) 

 
The Eq. (2) determines the nucleation rate in the pure, defect-free material. In the real solids there 
are structural defects, such as dislocations, grain boundaries in polycrystals, inclusions in alloys etc. 
Micro-crack formation in the defective (weakened) regions requires smaller work in comparison 
with the undefective one, since these regions already possess raised energy relative to the 
defect-free crystal material (atoms in it are weaker bounded with each other). Primary origination of 
voids near the defects is observed in MD simulations [7,10]. We have to consider an influence of 
defects on the micro-cracks formation. Faultiness of current region of the material can be 
characterized by a parameter *γ  in such a way, that difference ( )*γ γ−  defines the crack surface 

formation energy per unit area in this defective region, *γ γ< . Then the formation work of the 
critical crack is equal to ( ) ( ) ( )* * 2

cr cr2 / 3A Rγ π γ γ= − , where crR  is determined by γ  because 
the crack must grow further in the defect-free regions of crystal, hence, it should be stable at this 
value of surface tension. We suppose that the weakened zones are exponentially distributed on *γ : 

( ) ( )* *
0 exp /n nγ γ γ= ⋅ − Δ  where γΔ  is a distribution parameter. The product ( )* *n dγ γ  is the 

number of micro-cracks nucleation centers in unit volume of substance with the faultiness 
parameter belonging to *dγ  interval near the *γ . The constant 0n  is determined by the 

normalization condition: ( ) ( )( )* *
00

1 exp /gn n d n
γ

γ γ γ γ γ= = ⋅Δ ⋅ − − Δ∫ . Than the crack generation 

rate is defined by the following expression: 

 
( ) ( )( ) ( )

( ) ( ) ( )

2
cr

4 2
cr cr

exp 2 / 3 exp /

16 1 2 / 3 1 exp /

Bt

B

R k Tcdn
dt R R k T

π γ γ γ

π γ γ γ

⎡ ⎤− − − Δ⎣ ⎦=
⎡ ⎤− Δ ⋅ − − Δ⎡ ⎤⎣ ⎦⎣ ⎦

. (3) 

At 0γΔ =  (homogeneous material) this equation turns back to the Eq. (2). Thus, the proposed 
model of fracture contains two empirical parameters: γ  and γΔ . The first of them, γ , is of the 
order of surface tension, and the second one, γΔ , is defined by the degree of material faultiness. 
 
2.3. Continuous formulation 
 
Here and further we operate with macroscopic length scale, which is much larger than the 
micro-crack size and the distance between the micro-cracks. It means that each physically small 
volume of substance contains a set of micro-cracks. Therefore, we use macroscopic fields of 
substance density, velocity, stresses, deformations, et alia, which are averaged over such physically 
small volumes. Let us assume that in considered substance element all micro-cracks have identical 
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spatial orientation β
r

. For volume element V  it is possible to write: c SfV V V= + , where cV  is a 
part of volume occupied by solid, not cracked, material, and SfV  is a total volume of all 
micro-cracks in V . Let us introduce Sf /V Vη =  – the fraction of volume which is occupied by 
cracks. Growth of the total micro-cracks volume with rate SfV&  at the fixed total element volume 
V  leads to decrease of the solid material volume with the rate c SfV V V η= − = − ⋅& & &. If h R<< , than 
this change of solid material volume occurs predominantly due to solid material deformation in the 
β
r

 direction. Corresponding deformation of substance in auxiliary coordinate system is 
characterized by a sole strain component: 

 с

c

1
1

V const

dW V d
dt V dt

ββ η
η

=

= = −
−

&
,  

Transformation of this strain tensor into lab coordinates is the next: 

 1
1

ik
i k

dW d
dt dt

ηβ β
η

⎛ ⎞
= − ⎜ ⎟−⎝ ⎠

, (4) 

where ikW is symmetrical strain tensor. The use of ikW  as an additional strain of solid material 
allows considering of the tensile stresses relaxation caused by cracks nucleation and growth. 
Assuming that all micro-cracks in volume element have the same size, it is possible to write for the 
micro-cracks volume fraction fn Vη = ⋅ . 
 
The adjacent micro-cracks can coalesce forming a main crack or fractionized zone of material. We 
suppose that separate micro-cracks develop solitary until their diameter 2R  reaches the value of an 
average distance between the cracks, which is equal to 1/3n− . If the relation 1/32R n−≥  is satisfied in 
any volume element, then material of this element is assumed to be completely fractured, and all stress 
components are set equal to zero in it. 
 
In the present report a uniaxial deformation of substance along Oz-axis is considered with the 
constant macroscopic strain rate / constzzd dtε = . The maximal tensile stress operates along 

Oz-axis: zeβ =
r r , zzβσ σ= . The continuum mechanics equations in this case are reduced to the next 

set: 

 zz zzd dWd
dt dt dt

ερ ρ ⎛ ⎞= − +⎜ ⎟
⎝ ⎠

, (5) 

 zz zz zz
zz zz

d dW dwdU S
dt dt dt dt

ερ σ ⎛ ⎞= + +⎜ ⎟
⎝ ⎠

, (6) 

 ( , )zz zzP U Sσ ρ= − + , (7) 

 4 2
3

zz zz zz zzdS d dW dwG G
dt dt dt dt

ε⎛ ⎞= + −⎜ ⎟
⎝ ⎠

, (8) 

 
( )

1
1

zzdW d
dt dt

η
η

= −
−

, (9) 

 32 zzn R
G
ση π⎛ ⎞= ⋅ ⎜ ⎟

⎝ ⎠
, (10) 

where zzw  is the plastic distortion due to the dislocations movement; U  is the specific internal 
energy, P  is the pressure; zzS  is deviator of stresses. All variables here are averaged over 
physically small volumes. The Eqs (5)-(10) have to be completed by the Eq. (1) and Eq. (3) for the 
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micro-cracks nucleation and growth and by the equations for determination of the plastic distortion 
ikw  through the dislocations movement (see, for example, [17]). For determination of the pressure 

and temperature, the wide-range equations of state [18,19] were used in the forms of dependences 
( ),P P Uρ=  and ( ),T T Uρ= . All equations have been integrated in time by the explicit Euler 

scheme with variable time step, which has been selected from the stability condition 
{ }min 0.1 / , 0.001/ zzt R R εΔ ≤ & & . Parameters γ  and γΔ  had been chosen by fitting with the 

experimental data [1-4,20-26] and with the of molecular-dynamics (MD) simulation results [7,9,10] 
for the strain rate dependences of the material strength; the obtained values of these parameters are 
summarized in the Table 1. 
 

Table 1. Parameters of the fracture model. Abbreviations: m/c – monocrystalline, p/c – polycrystalline. 
Cu Al Ti Fe Zn Mo  

Substance m/c p/c m/c p/c p/c p/c m/c m/c p/c 
γ , J/m2 0.95 0.60 0.57 0.47 1 1 0.8 1.1 0.7 
γΔ , J/m2 0.029 0.029 0.016 0.016 0.027 0.036 0.029 0.034 0.034

 
3. Results and discussion 
 
Strain dependences of tensile stress have been obtained in calculations; the typical dependences are 
shown in Fig. 2(a). Stress grows up with strain at the initial stage. Then the tension reaches some 
critical level, an intensive nucleation and growth of the cracks begins. It leads to relaxation of 
tensile stresses; the increase of stresses is changed on the decrease. Non-zero level of tensile 
stresses is held till the complete destruction of substance. The moment of complete destruction 
corresponds to the slump of stresses down to zero. The maximal obtained value of tensile stresses 
has to be treated as the dynamic (spall) strength of the material spσ . Dynamic strength increases 
with the strain rate, because the growth rate of the total volume of cracks has to be proportional to 
the strain rate for effective relaxation of the tensile stresses. This total volume is determined by the 
number and size of cracks; therefore, nucleation and growth rates have to be increased for 
relaxation at the increased strain rate, these rates are obtained at higher level of the tensile stresses. 
 
Fig. 2(b) shows the strain dependences of the average radius R , the critical radius crR  and the 
concentration n  of the micro-cracks. Nucleation of cracks starts at the earliest stages of 
deformation, but its concentration is insignificant initially. At the low acting stresses, voids are 
nucleated only in weakened zones with a very high value of faultiness *γ γ≈ , concentration of 
which is negligibly small. The critical radius decreases with the increase of strains and of the tensile 
stresses; zones with lower faultiness begin to contribute in nucleation of cracks, and the 
concentration of cracks grows fast. When the concentration reaches some value, the relaxation on 
micro-cracks becomes a dominant process, and the tensile stresses begin to decrease (see Fig. 2 (a)). 
It initiates an increase of the critical radius and slump of the nucleation rate of new cracks, only the 
growth of the existing micro-cracks takes place. This growth continues up to the reaching of the 
complete destruction, after than, R  means a typical size of fragments in the destructed material. It 
is 30 μm and 7 μm for the strain rates 106 s-1 and 107 s-1 correspondently. 
 
The calculated strain rate dependencies of the dynamic strength for monocrystalline and 
polycrystalline copper and aluminum are presented in Fig. 3 in comparison with the experimental 
data and MD simulation results. The model parameters γ  and γΔ  (Table 1) have been chosen for 
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fitting our results with experiments and MD modeling. At the same time, the fracture model gives 
correct slopes of the curve ( )sp /d dtσ ε  in the both regimes of nucleation, and these slopes are not 
regulated by the model parameters. For unequivocal selecting of the parameters a simultaneous 
comparison with experimental data at the moderate strain rates (heterogeneous nucleation) and with 
results of MD simulations at very high strain rates (homogeneous nucleation) is optimal. 
 

 
Figure 2. The strain dependence of stresses at two constant strain rates in the monocrystalline copper (a). 
Strain dependences of the average micro-cracks radius (1), the critical radius (2) and the concentration of 

micro-cracks (3) at the constant strain rate и 107 s-1 (b). 
 

 
Figure 3. The strain rate dependences of the dynamic strength of copper (a) and aluminum (b). For copper (a): 
experimental data for monocrystals 1 – [2] and 3 – [20]; experimental data for polycrystals 2 – [2], 4 – [21], 
9 – [22], 10 – [4], 11 – [23]; markers 5 for monocrystal and 6 for polycrystal are the results of MD [7]; lines 
are predictions of the model for monocrystals 7 and polycrystals 8. For aluminum (b): experimental data, 1 - 
monocrystal [1], 2 - polycrystal of 99.9% purity [24], 3 – alloy AlMg6 [25], 4 - commercially pure aluminum 
AD1 [26], 8 – polycristals [3], 10 – [22], 11 – [4]; results of MD for monocrystals (5) - [10] and 9 - [9]; lines 

are predictions of the model for monocrystals 6 and polycrystals 7. 
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Experimental results at the strain rates 8 -110 s≤  correspond to the regime of heterogeneous 
nucleation then the formation of micro-cracks occurs on inhomogeneities (defects of the 
exponential spectrum). MD results and experiments [3,20] for the strain rates 8 -110 s>  correspond 
to the mode of homogeneous nucleation when the micro-cracks are typically formed in 
homogeneous parts of material (zones of perfect crystal or zones with a bundle of identical defects). 
The term «homogeneous nucleation» is conditional for polycrystals because in this case the fracture 
begins in the grain boundaries [7]. Therefore, we use here this term in the sense of presence of a 
quantity of identical uniformly distributed defects, for example, grain boundaries (in contrast with 
the defects of exponential spectrum). 
 
Calculations show, that plasticity is a dominant factor influencing on the voids growth and on the 
dynamic strength at the strain rates ≤ 104 s–1. On the contrary, at the strain rates ≥ 107 s–1, the 
plasticity is negligible in the dynamic strength calculations, but it can influences on the resulting 
form of voids and on the picture of destructed material. 
 
4. Conclusions 
 
The micro-cracks nucleation and growth have been analyzed for the purpose of the dynamical 
fracture description. The model was formulated, which agrees well with experimental and MD data 
on the strain rate dependence of the dynamic strength for a number of metals. This model can be 
practically used in the material dynamics simulations. The strain rate dependence of the dynamic 
strength has two different regions corresponding to regimes of the heterogeneous nucleation (at the 
strain rates < 108 s–1) and the homogeneous nucleation (at the strain rates > 108 s–1). In the first case, 
the weakened zones of the material play an important role in fracture. In the second mode, the 
number of weakened zones is insufficient, voids are nucleated in undefected material, and the 
strength growth is decelerated. It contradicts with the commonly used uniform power dependence of 

spσ  on /d dtε  [3,10] in the whole region of the strain rate, therefore, the ideal strength [3] can be 
achieved at the higher strain rates (above 1011–1012 s–1), than it follows from the power dependence. 
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