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Abstract  The main goal of ceramic laminates designed with residual stresses is to increase the fracture 
energy of the system during fracture through energy dissipating mechanisms such as crack deflection or 
crack bifurcation. A computational tool based on Finite Fracture Mechanics (FFM) is implemented in this 
work to predict the propagation of cracks in ceramic laminates. The crack path is defined by the direction 
where maximum rate of the potential energy is released during fracture. Laminates studied here consist of 
two materials alternated in a layered structure designed with high compressive residual stresses, which are 
developed during cooling phase after sintering process. Different volume ratios of the material components 
are chosen in order to demonstrate the influence of the level of compressive residual stresses on the type of 
propagation (single crack deflection / crack bifurcation) and direction of the crack advance. Using the model 
a single crack deflection or crack bifurcation can be predicted for a given laminate. According to the 
calculations, the higher compressive stress in the layer is, the more the crack deflects from the straight 
direction and the more prone to the bifurcation. Results are in good agreement with experimental 
observations. 
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1. Introduction 
 
Ceramic laminates have become an alternative choice for the design of structural ceramics with 
improved fracture toughness and mechanical reliability. The brittle fracture of monolithic ceramics 
has been overcome by introducing layered architectures of different kind, i.e. geometry, 
composition of layers, weak interfaces, strong interfaces with residual stresses, etc. The main goal 
of such layered ceramics has been to increase the fracture energy of the system through energy 
dissipating mechanisms such as crack deflection, crack bifurcation, interface delamination, or crack 
shielding. Among the various laminate designs reported in literature, two main approaches 
regarding the fracture energy of the interfaces must be highlighted. On the one hand, laminates 
designed with weak interfaces have been reported to yield significant enhanced failure resistance 
through interface delamination [1-5]; the fracture of the first layer is followed by crack propagation 
along the interface, the so-called “graceful failure”, preventing the material from catastrophic 
failure. On the other hand, laminates designed with strong interfaces have shown significant crack 
growth resistance (R-curve) behavior through microstructural design (e.g. grain size, layer 
composition) [6-8] and/or due to the presence of compressive residual stresses, acting as a barrier 
(“ flaw tolerant”) to crack propagation [2, 9-14].  
 
The increase in fracture energy in these laminates is associated with energy dissipating mechanisms 
such as crack deflection/bifurcation phenomena, which act during crack propagation. The 
optimization of the layered design is based on the capability of the layers to deviate the crack from 
straight propagation. Experimental observations have shown the tendency of a crack to propagate 
with an angle through the compressive layer and even cause delamination of the interface [15] (see 
Fig. 1). It seems that the magnitude of compressive stresses may influence the angle of propagation 
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and subsequent delamination of the interface. 
 

  

a)                                              b) 

Figure 1. a) Fracture of a ceramic laminate under flexural bending; bright layers have compressive residual 

stresses. b) Bifurcation of a crack entering the compressive layer of the laminate. 
 
The prediction of the crack path upon loading in such layered systems should help in tailoring the 
design with maximal fracture energy. Methods based on energetic considerations are available 
which attempt to predict the behavior of a crack approaching the interface of dissimilar materials 
(see for instance Ref. [16]). However, the modeling of the propagation of an interface crack through 
layered architectures with residual stresses is still missing. A method which can be used to predict 
the conditions under which the crack deflects or bifurcates within the compressive layer is sought. 
In this work, a model based on the finite fracture mechanics approach is developed to interpret and 
predict the direction of propagation of a crack impinging an interface of a ceramic laminate 
designed with internal compressive residual stresses. The thermal strains in the layers occurring 
during sintering, which are responsible for the mechanical behavior of the laminate, are taken into 
account.  
 
2. Model for crack path prediction in laminates 
 
2.1. Material of study: loading configuration 

 
A Finite Element analysis of a pre-cracked ceramic laminate specimen mechanically loaded in 
four-point bending was carried out. The thermal loading resulting from cooling down after sintering 
was also considered. The multilayer consists of a symmetric and periodic architecture with nine 
alternating layers of different thickness. In the initial state, a crack is introduced only in the first 
ATZ layer and impinges the first interface between ATZ and AMZ layer as depicted in Figure 2. 
Such laminate is subsequently subjected to the mechanical loading (4-point bend test). All the layers 
made of the same material, ATZ (alumina with 5% tetragonal zirconia), or AMZ (alumina with 30% 
monoclinic zirconia) have the same thickness, tATZ and tAMZ, respectively. Table 1 gives the values of 
the constituent material properties employed in the calculations.  
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Figure 2. Schematic of the laminate of study with the applied boundary conditions (combined loading in 

4-point bending flexure and residual stresses from sintering process). An initial crack is introduced in the 

first layer 

 

Table 1. Young’s modulus (E), Poisson’s ratio (ν), Coefficient of Thermal Expansion (α), Flexural Strength 

(σf), Fracture Toughness (KIc) and Fracture Energy (Gc) of the layer materials 

Material 
E 

[GPa] 
ν 
[-] 

α x10-6 

[K -1] 
σf 

[MPa] 
KIc 

[MPa.m1/2] 
Gc 

[J/m2] 

ATZ 390±10 0.22 9.8±0.2 422±30 3.2±0.1 25±2 
AMZ 280±10 0.22 8±0.2 90±20 2.6±0.1 23±2 

 
In order to show the influence of the level of residual stresses on the propagation of the crack (i.e. 
deflection or bifurcation), three configurations with different volume ratio of the material 
components were considered and calculated. The total height of the laminate WS was kept constant 
WS =3mm and the thicknesses of the layers (tATZ and tAMZ) were thus given by the chosen volume 
ratio – see (Table 2). The residual stresses corresponding to the chosen volume ratio configuration 

were calculated using the classical laminate theory by considering of ∆T = –1230°C (temperature 
between sintering and room temperature) and material properties given in the Table 1. The 
calculated residual stresses are listed in Table 2 as well.  
 

Table 2. Layer thicknesses and corresponding residual stresses in the ATZ and AMZ layer for              

three different volume ratios of ATZ and AMZ material (WS=const.=3mm) 

VATZ/VAMZ (tATZ/tAMZ) tATZ [mm] tAMZ [mm] σres,ATZ [MPa] σres,AMZ [MPa] 

2 (1.6) 0.400 0.250 +292 –585 
5 (4.0) 0.500 0.125 +140 –695 
8 (6.4) 0.533 0.083 +90 –730 

 
2.2 Description of computational approach 

 
In order to decide about the type of further crack propagation (single or double crack penetration) 
and/or about further crack propagation direction, a change of the potential energy –δΠ  for the 
crack increments in all possible propagation directions has to be calculated. Direction and/or type of 
propagation is selected such that δΠ  attains a maximum value (where maximum of energy is 
released by the fracture process). However one should note that the energy release rate (ERR) for 

Mat. A ( EA,νA,αA)  

Mat. B ( EB,νB,αB)  
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the crack terminating at the interface of two different materials is, for infinitesimally small crack 
increment, zero or infinite (depending on the singularity type). Thus the classical Griffith approach 
cannot be used. To bypass this problem, a theory of Finite Fracture Mechanics (FFM) can be 
employed – see e.g. references [20,21]. Infinitesimal crack increment is replaced by a finite crack 
increment for which the change of the potential energy can be calculated. 
 
The essence of the FFM consists in the key assumption that crack propagation is a discontinuous 
process occurring in finite steps, rather than continuously and smoothly as in the traditional LEFM 
theory [20,22-24]. Mathematically, instead of using the differential form of the Griffith energy 
balance, the integral formulation of the Griffith criterion is applied. Such approach is of particular 
importance, for instance, in the case of a crack crossing thermo-elastically mismatched interfaces, 
where the energy release rate is either zero or infinite and, as a consequence, the differential 
approach fails. For example, if the crack penetrates from material layer 1 to layer 2, the concept of 

FFM states that the crack will follow the path which maximizes the additional energy ∆Wp released 
in the fracture process [24], as given by: 

 ( )2
p p c pW G a∆ = δΠ − . (1) 

 
Here, Gc

(2) is the toughness of the next layer to which crack penetrates, δΠp is a change of the 
potential energy between the original and new crack position, and ap stands for an increment of the 
new crack. 
 
Hereafter the concept of the Finite fracture mechanics is applied. Matched asymptotic expansions 
procedure, see e.g. [17-21], is used to derive the change of potential energy due to the perturbation 
caused by a single or branched crack extension of total length ap = ab or a straight penetrating crack 

extension of length ap (in several possible crack propagation directions ϕp – see Figure 3).  
 

 
 

 

a) b) c) 

Figure 3. Scheme of the a) crack terminating at the interface of M1 and M2,  b) single crack deflection and 

c) crack bifurcation (branching) and local coordinate systems in the inner domain, where the crack extension 

length ap=ab/2+ ab/2 = 1 
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The small perturbation parameter ε is defined as ε=ap/WS<<1, where WS is the characteristic size of 
the specimen (e.g. specimen height). A second scale to the problem can be introduced, represented 

by the scaled-up coordinates (y1
ε, y2

ε)=(x1/ε, x2/ε) which provide a zoomed-in view into the region 
surrounding the crack, so-called inner domain Ωin (see Figure 3). 
 
The energy release rate is defined by: 

(((( ))))( )
0

1
lim .ε ε δε

δε

δΠ δΠ
δεp b

S

G a
W

++++

→→→→

−−−−====            (2) 

 
Assuming that the loading is constant during crack extension, the change of the potential energy 
δΠε between the unperturbed state U0 (without the crack extension) and perturbed state εU  (with 
the small finite crack extension) can be obtained from the asymptotic expansion with respect to a 

small parameter ε as: 

( ) ( )
( )

( )

2
1 20

21
...., 0 for 0 and 1

ΠΠ = Π − Π = Π + Π + → → <
Π

ε ε
ε ε ε

ε

δδ δ δ ε δ
δ

,        (3) 

 
where 

( ) ( ) ( ) ( )( ) ( )
1 1 2 1

1 1 2 2

2 2
1 2 22 2

1 1 ( ) 1 2 1 ( ) 2 ( ) 2 2 ( ) .
2 2 2

δ δ δ δ
δ δ δ δ

εδ ϕ ε ε ϕ ϕ ϕ ε
+

+ ′ ′Π = + ⋅ + +S S S
p b p p b p p b p p b p

W W W
H K H H K K H K    (4) 

 
Where H1 and H2 are generalized stress intensity factors (GSIF) and δ1, δ2 are the corresponding 
singularity exponents (δ1<δ2) in the stress asymptotic expansion (see [20,21]). The coefficients K1d(p) 

and K2d(p) are computed in the inner domain Ωin, which is unbounded for ε→0 but in the model 
employed in the finite element calculation, Ωin is approximated by a circular region with radius R 
much larger than the crack extension length ad(p). On the circle boundary, the condition of the type 

( )1

1in

δ
∂Ω

= ρU u θ  is prescribed. ( ) , 1,2id pK i =
 
are calculated using the path independent integral: 

 ( ) ( )( ) ( ) ( )( ) ( )( )1 1, , ,   1,2i ih h s h
kl l ik kl l kip b i

K n u n ds iδ δ

Γ

= σ ρ θ ρ θ − σ ρ θ ρ θ =∫ uV V  (5) 

 
Similarly, the coefficients K´1d(p), K´2d(p) are calculated in the inner domain whose remote boundary 

∂Ωin is subjected to the boundary condition ( )2

2in

δ
∂Ω

= ρU u θ
 

 ( ) ( )( ) ( ) ( )( ) ( )( )2 2, , ,   1,2i ih h s h
kl l ik kl l kip b i

K n u n ds iδ δ

Γ

′ = σ ρ θ ρ θ − σ ρ θ ρ θ =∫ uV V  (6) 

 
where h

klσ , ,  1,2h
i i =V  denotes FE approximation to the functions klσ , iV . 

 

The second term of the change of the potential energy δΠε
(2) depends on crack extension geometry. 

Two specific crack extension patterns are considered – crack bifurcation and crack deflection. For 

the case of the crack bifurcation δΠε
(2) is given by: 
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while for the case of single crack deflection δΠε
(2) reads: 
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The factors Kip(b) and the opening of the crack extension 
11y′′′′V ,

12y′′′′V  etc., are calculated by FEM on 

the inner domain – for methodology see e.g. references [20,21].  
Note that GSIFs in Eqs. (4), (7) and (8) respectively are generally the sums of two contributions 

1 1 1 2 2 2
m r m rH H H H H H= + = += + = += + = += + = +, , ,                  (9) 

 
where Hi

m are due to pure flexural loading and Hi
r are due to pure thermal loading respectively. For 

calculation of GSIFs a two-state integral with FEM is employed - see [20,21]. 
Remark: If some of the GSIF H1 or H2 are close (or equal) to 0 (e.g. case of the crack perpendicular 
to the interface), then Eqs. (4), (7) and (8) will simplify significantly. 
 

3. Results 
 
The experimental observations (made by authors of [15]) shows that in case of laminates with 
higher volume ratios (VATZ/VAMZ>4), the crack originated in the first ATZ layer does not stop at the 

interface, but arrests close behind the interface at a distance ∆a (the distance ∆a depends on the 
level of residual stresses). To explain this behavior, the thermal stress intensity factor for a wide 
range of crack lengths in ATZ layer and AMZ layer was calculated - see Figure 4. In terms of ERR 
the results are displayed in Figure 5. One can see that, for higher volume ratios, the crack has to be 
arrested close behind the interface since the SIF decreases rapidly by propagation in the 

compressive layer. At the distance of ∆a ≅7µm (for VATZ/VAMZ =8) and distance ∆a≅27µm (for 
VATZ/VAMZ =5) the energy accumulated in the system is released and thus the crack is arrested. For 
subsequent propagation an additional mechanical loading is required. For the ratio VATZ/VAMZ =2 the 
crack either arrests in much higher distance behind the interface or it propagates straight through the 
whole laminate (due to high tensile stresses in the first ATZ layer). 
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Figure 4. SIF KI calculated for crack approaching interface and SIF KI calculated for crack propagating 

straight in the second material. Laminate body was subjected to the thermal load ∆T=-1230°C. SIF KI 

evaluated using ANSYS function KCALC. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. ERR GI calculated for crack approaching interface and ERR GI calculated for crack propagating 

straight in the second material. Laminate body was subjected to the thermal load ∆T=-1230°C. ERR Gr 

evaluated using the ANSYS function CINT (J-integral). 

 
The values of the GSIFs characterizing the stress state at the crack tip for crack terminating at the 
interface of ATZ and AMZ layer are listed in Table 3. The GSIF for mechanical loading is 
calculated for a loading force of 10N. For higher forces it can be easily recalculated (due to its 
linear dependence on the applied load).  
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Main 
crack 

ϕϕϕϕp=18° 
ϕϕϕϕp=20° 

Main 
crack 

Main 
crack 

ϕϕϕϕp=30° ϕϕϕϕp=26° 

Main 
crack 

Table 3. Values of the GSIFs (crack terminating at the interface) for δ=0.46391, F=10N/mm, ∆T=-1230°C. 

VATZ /VAMZ
 Hm [MPa.m1-δ] Hr (∆T) [MPa.m1-δ] σxx

(AMZ) (∆T) [MPa] H=Hm+H r 

2/1 0.10 2.92 -795 3.02 
5/1 0.11 1.58 -795 1.69 
8/1 0.11 1.07 -795 1.18 

 

For the calculation of δΠ (Eqs. (2), (4), (7), (8)) for different propagation directions (including 
single penetration and bifurcation type of propagation) values of SIFs, corresponding to the state, 
when the crack is arrested behind the interface, were used – see Figure 5. Observe that SIF 
decreases rapidly with increasing length of crack extension behind the interface. In Figure 6 a), b) a 
ceramic laminate with volume ratio of laminate components VATZ/VAMZ=8 is studied. Energetic 

condition for crack propagation (the additional energy ∆W ≥0 - see Eq. (1)) is satisfied for the 
loading force F≅100N. The referred figure shows a change in potential energy for case of single 
penetration and crack bifurcation (for ap=ab=25µm). One can see that crack bifurcation is a 
preferred propagation type in this case (due to higher change in potential energy).  
 

 
 
 
 
 
 
 
 
 
 
 

 
 
  

          a)   b) 
 

 
 
 
 
 
 
 

          
 
 
 
 
 

 

          c)  d) 
Figure 6. Variation of the change of the potential energy δΠ with the angle of the crack extension for a), b) 

volume ratio VATZ/VAMZ=8 and c), d) VATZ/VAMZ=5. For each volume ratio a case of single crack deflection - 

a), c) and case of the crack bifurcation - b), d) is calculated. 

δδδδΠΠΠΠp,max (18°) =6.5·10-10 J/m  δδδδΠΠΠΠb,max(22°) = 7.5·10-10 J/m

δδδδΠΠΠΠp,max (30°) =3.44·10-10 J/m  δδδδΠΠΠΠb,max(26°) = 3.42·10-10 J/m  
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The same study was also made for ceramic laminate with VATZ/VAMZ=5 - Figure 6 c), d) and here the 

critical loading force was estimated as F≅115N. In this case, a preferred propagation direction is 
starting to be a single deflection. For ratios VATZ/VAMZ<5 only a single crack deflection is predicted 
as preferred propagation direction. In case of volume ratio VATZ/VAMZ=2, the crack propagates 
almost straight, maximally with a slight deflection from the original direction (with no bifurcation 
phenomena). 

 
4. Conclusions 
 
The crack path in laminates is influenced by the magnitude and location of the compressive stresses 
in the internal layers. A semi-analytical model based on Finite Fracture Mechanics (FFM) theory 
was here developed to describe and predict the crack propagation in symmetric laminates consisting 
of alternated tensile–compressive layers built–up in a periodic architecture. In addition to the 
mechanical loading under flexural bending, a thermal loading associated with the thermal mismatch 
of the layers during sintering was also taken into account in the model. The fracture criterion was 

based on the calculation of the change of the potential energy δΠ for a finite crack increment length, 
starting from the tip of the original crack and advancing in several possible propagation directions 
(angle of crack propagation). From all theoretically possible crack paths, the change of the potential 
energy between unperturbed and perturbed state was evaluated. Direction and/or type of 

propagation were selected such that the change of δΠ would attain a maximum value.  
 
In case of the low volume ratios (i.e. V1/V2= 1/1 – 4/1) single crack deflection (and in some cases 
straight crack propagation) is preferred with an angle lower than 20° (measured from the straight 
propagation). On the other hand, for relative high volume ratios, (i.e. V1/V2= 6/1 – 8/1), 
corresponding to high compressive residual stresses, crack bifurcation (i.e crack propagating 
simultaneously in two directions) is predicted by the model. Such behaviour is also in 
correspondence with the experimental observations.  
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