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Abstract  A new method for determining crack toughness of materials is described based on test data of 
small-size chevron-notched specimens in terms of commercial titanium VT1-0 and titanium alloy VT6 with 
ultrafine-grained (UFG) structure, obtained by methods of severe plastic deformation (SPD). A problem of 
separating a part, connected with variations in specimen ductility under crack propagation, of the total 
displacement of load application point, is solved. Equations to calculate specific fracture energy are obtained. 
The calculated values of stress intensity factor KIc are in good agreement with known test data of standard 
specimens. 
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1. Introduction 
 
Standard crack toughness tests of materials are generally conducted using the bulk specimens not less 
than 10 mm in thickness. Although in many cases it is more convenient to use specimens of 
essentially smaller thickness for this purpose. These specimens do not require a large amount of 
material and high-power testing machines. Due to this, there is an issue in assessing crack toughness 
of ultrafine-grained (UFG) and nanostructured materials. The production of these materials in bulk 
specimens is connected with a series of technical problems. When testing the fracture toughness 
(crack toughness) of small-size specimens, the chevron-notched specimens are generally used [1-5]. 
Moreover, specimens with configuration of this type are not required to be fatigue pre-cracked.  
In the given paper, a new method for determining crack toughness of materials is described based 
on test data of small-size chevron-notched specimens in terms of commercial titanium VT1-0 and 
titanium alloy VT6 with ultrafine-grained (UFG) structure, obtained by methods of severe plastic 
deformation (SPD). 
In course of this study, important computational works, connected with using of chevron-notched 
specimens, were performed: 
• Calculation of the Young 's modulus of the material Е; 
• Definition of specific fracture energy (crack-driving force [6]) under crack propagation Gs. 
 
2. Determination of Young’s modulus when testing chevron-notched specimens 
The data on Young’s modulus value for the materials with UFG structure is limited. It is known that 
SPD strongly affects the Е value [7, 8]. A method of Young’s modulus determination by test data of 
the chevron-notched specimens is described below. 
A scheme of the chevron-notched specimen is presented in Fig. 1. This configuration of the specimen 
can be considered as a double-cantilever design. 
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A single cantilever was presented as a beam of elementary cantilevers (mini-cantilevers) of 
infinitesimal thickness dx. As seen from Fig. 1, length of the elementary cantilever at a distance of х 
from the specimen axis is equal to l(x) = l0 + x⋅ctg(α/2), where l0 is the minimum distance from the 
load application point to the chevron notch boundary, α is the angle at the end of the chevron notch 
(Fig. 1). The known formula from the elasticity theory is valid for each cantilever in the beam 
[9-11]: 
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Fig. 1. Scheme of the chevron-notched specimen. 

 
where b is the cantilever thickness,  dP is the load that provides cantilever deflection in width of dx 
by the value of λ’. Displacement of load application points λ for a double-cantilever design exceeds λ’ 
twice, i.е. λ = 2λ’. Accordingly, from the equation (1) we derive the dependence of elementary load 
dP, applied to the mini-cantilever’s end on the variable x:  
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Integration of elementary forces (2) affecting each mini-cantilever along the full width of the 
specimen а, determines the actual load Р, to which the displacement of load application points by 
the value of λ corresponds: 
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where а is the specimen width (Fig. 1). 
Hence we derive the working formula to determine the Young’s modulus: 
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The value of М = P/λ characterizes the specimen rigidity at the initial stage of elastic loading. 
According to the formula (3), the Young’s modulus calculations for commercial titanium VТ1-0 and 
titanium alloy VТ6 were conducted. For the VТ6-alloy with coarse-grained (CG) structure (grain size 
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d ranges from 7 to 10 µm), the value of Е equal to 110±8 GPa was obtained. For the same material 
with UFG structure, the value of Е is equal to 114±8 GPa. These values agree with reference data [7]. 
The Young’s moduli of commercial titanium VТ1-0 in CG and UFG states appeared equal to 111±8 
GPa and 113±8 GPa, respectively, that slightly differs from the value of Е equal to 110 GPa for 
commercial titanium by reference data [12, 13]. Thus, the conducted calculations with use of 
experimental data have shown the following: 
- equation (3) can be used for approximate Young’s modulus calculation for materials by test data of 
the chevron-notched specimens; 
- grain structure refinement by SPD methods does not lead to essential change in elastic behavior of 
the studied specimens. 
 
3. Definition of specific fracture energy under crack propagation Gs 
Energy approach is reasonable when determining condition of unstable crack propagation. The gist 
of energy fracture criterion can be defined as follows: crack growth takes place if system can 
release energy to start crack propagation at elementary distance dl. Energy necessary for crack 
growth appears entirely due to elastic strain energy occurring in bulk of the material under the 
action of external applied force. 
Let us consider a double-cantilever beam specimen with a narrow straight-through notch (Fig. 2) to 
begin with. Distance from load application points to the notch boundary is a crack in length of l0. It 
was shown in the papers [6, 14] for this case that a necessary condition for crack propagation obeys 
the equation  

2 η ,P dG
dS

=                                     (4) 

where Р is the load applied to the specimen, dS = 2a⋅dl is the doubled area swept by the crack when 
propagating to the short distance dl (Fig. 2), η = λе/P is the specimen ductility (value reverse to 
rigidity М = λе/P). The value of G determines elastic energy release rate under crack propagation. 
Further we shall call the characteristics of G a specific fracture energy. 
 

 
Fig. 2. Straight-through notched specimen. 

 
According to [6], displacement of load application points λе for the specimen in width of a with crack 
length l is provided by load: 
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Ductility of such specimen is equal to: 
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Considering that dS is equal to 2a⋅dl, we shall find the derivative dη/dS in the equation (4): 
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Substituting the given expression into (4), we shall obtain: 
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Equation (6) determines specific fracture energy along the crack length l and external load value Р, 
wherein the crack starts to propagate.  
Substituting expression (5) into this equation, we shall derive an equation for Gs, which allow us to 
calculate specific fracture energy based on crack length l and the value of λе: 
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It is seen that in the given presentation the value of G does not depend on the specimen width а. 
Let us apply these considerations to the chevron-notched specimen. Assume that in the process of 
loading of the given specimen, the material lost discontinuity in segment of Δl (Fig. 3). Crack front is 
presented as a straight line. It is easy to find from geometrical constructions that length of this line is 
equal to х = 2Δl⋅tg(α/2). An equation (7) can be applied to the middle part of the specimen in width of 
х , wherein crack length l makes l0 + Δl. Using the equation (7), a specific fracture energy G can be 
found, if increment Δl is known. Moreover, it is necessary to know displacement of force application 
point λе, caused by enhancement in specimen ductility when increasing the crack length by Δl. 

 
Fig. 3. Determination of the specific fracture energy Gs. 

It should be noted that the experimentally measured value of λ (Fig. 3), in addition λе, includes the 
contribution due to plastic deformation of the material at the mouth of the crack, and in the volume of 
sample as a whole. 
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The value of λе can be determined if its dependence from the external force Р is found. To determine 
Р, let us present a specimen with a crack as a set of double-cantilever beams: with straight-through 
notch in width of х and with chevron notch in width of а - х (Fig. 4). We shall find forces Р1 and Р2 for 
each part, determining equal displacement λе of these force application points. Using equation (5), it 
is easy to derive expression for the force Р1 affecting the specimen in width of х = 2Δl⋅tg(α/2), which 
provides displacement of load application points Р1 to the specified value of λе: 
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Fig. 4. Presentation of the double-cantilever beam specimen. 

When applying equation (3), with regard for the width of the chevron-notched specimen equal to 
а-х, we shall derive an expression for the force Р2, which provides displacement of load application 
points to the same value of λе: 
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where l = l0 + Δl. 

From equations (8) and (9), an expression for λе is determined: 
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where Р = Р1+Р2.  
Equations (7) and (10) were used to calculate fracture energy determining the necessary condition for 
spontaneous crack propagation in studied materials. 
Figure 5 presents typical loading diagrams for titanium alloy VТ6 and commercial titanium VТ1-0 
with UFG structure obtained under testing of small-size chevron-notched specimens. Both diagrams 
correspond to loading rate v = 2,0 µm/s. Specimens in length of 18 mm were made of bars in section 
of 6х6 mm2. 
Calculations have shown that the value of Gs is maximal at the peak of loading and therefore, can 
serve as a crack resistance criterion of studied materials at specified geometrical parameters and 
loading conditions of the specimen. 
Stress intensity factor is generally used as a crack resistance criterion in engineering fracture 
mechanics for a cleavage crack: 
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wherе Gs is the threshold fracture energy. Formula (11) allows determining the value of К1с by 
means of critical specific fracture energy Gs.  

 

    
Fig. 5. Loading diagrams of the VТ6-alloy (а) and commercial titanium VТ1-0 (b) with UFG structure. 

 
Values of crack resistance characteristics for the studied materials are presented in Tab. 1. It is 

seen that specific fracture energies of the VТ6-alloy in CG and UFG states differ significantly. 
Dimension of the Gs characteristics is energy per unit area. However, this value is not a surface 

energy of the material. The last one is several orders of magnitude smaller than fracture energy Gs. 
Thus, surface energy of titanium is equal to 1.7 J/m2 [12], at the same time, energy fracture value of 
commercial titanium, according to our calculations, is Gs = 27.82 kJ/m2. Agreement in values of Gs 
and surface energy will be observed only in case of totally brittle fracture. A colossal difference is 
caused by plastic strain processes intensively developing in metals and alloys that lead to essential 
change in shape and strain-stress state locally at the crack tip. 

Table 1. Mechanical characteristics of commercial titanium VТ1-0 and VТ6 

Material λр/λе Gs, kJ/m2 КIс, MPa/m1/2 Е, GPa 
VТ1-0 UFG 0.11 27.82 56.37 113 
VТ1-0  CG    111 
VТ6  UFG 0.11 31.48 63.2  114 
VТ6   CG 0.37 53.00 90.8 110 

According to equation (10), the values of λе are equal to 1.07 and 1.914 mm for VТ6 and VТ1-0, 
respectively. These values appeared smaller than experimentally measured displacement values of 
load application points λ, i.e. λ is equal to 1.21 mm for VТ6 and λ makes 2.12 mm for VТ1-0. 
Difference between measured and calculated values is caused by additional contribution of λр plastic 
strain into displacement of load application points, i.e. λр is equal to 0.14 mm for VТ6 and λр is equal 
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to 0.28 mm for VТ1-0. The relation λр/λе, apparently, can serve as mechanical characteristics 
determining a relative contribution of the specimen plastic distortion into displacement caused by 
change in specimen ductility. 

 
4. Conclusion 
A new method for determining crack toughness of materials is described based on test data of 
small-size chevron-notched specimens in terms of commercial titanium VT1-0 and titanium alloy 
VT6 with ultrafine-grained (UFG) structure, obtained by methods of severe plastic deformation 
(SPD). A problem of separating a part, connected with variations in specimen ductility under crack 
propagation, of the total displacement of load application point, is solved. A series of important 
computational problems connected with testing of chevron-notched specimens is solved in the study. 
Analytical expressions are obtained to calculate the Young’s modulus of the material and to 
determine specific fracture energy. 
The calculated values of the Young’s modulus Е and stress intensity factor KIc agree with known 
test data of standard specimens made of commercial titanium VТ1-0 and titanium alloy VТ6.  

The work was supported by Russian Foundation for Basic Research. Project № 08-10-01182-а. 
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